A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design
- URL: http://arxiv.org/abs/2208.06984v1
- Date: Mon, 15 Aug 2022 03:03:05 GMT
- Title: A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design
- Authors: Jialiang Sun and Wen Yao and Tingsong Jiang and Xiaoqian Chen
- Abstract summary: Well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples.
Given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited.
We propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models.
- Score: 1.9100854225243937
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The phenomenon of adversarial examples has been revealed in variant
scenarios. Recent studies show that well-designed adversarial defense
strategies can improve the robustness of deep learning models against
adversarial examples. However, with the rapid development of defense
technologies, it also tends to be more difficult to evaluate the robustness of
the defensed model due to the weak performance of existing manually designed
adversarial attacks. To address the challenge, given the defensed model, the
efficient adversarial attack with less computational burden and lower robust
accuracy is needed to be further exploited. Therefore, we propose a
multi-objective memetic algorithm for auto adversarial attack optimization
design, which realizes the automatical search for the near-optimal adversarial
attack towards defensed models. Firstly, the more general mathematical model of
auto adversarial attack optimization design is constructed, where the search
space includes not only the attacker operations, magnitude, iteration number,
and loss functions but also the connection ways of multiple adversarial
attacks. In addition, we develop a multi-objective memetic algorithm combining
NSGA-II and local search to solve the optimization problem. Finally, to
decrease the evaluation cost during the search, we propose a representative
data selection strategy based on the sorting of cross entropy loss values of
each images output by models. Experiments on CIFAR10, CIFAR100, and ImageNet
datasets show the effectiveness of our proposed method.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Multi-objective Evolutionary Search of Variable-length Composite
Semantic Perturbations [1.9100854225243937]
We propose a novel method called multi-objective evolutionary search of variable-length composite semantic perturbations (MES-VCSP)
MES-VCSP can obtain adversarial examples with a higher attack success rate, more naturalness, and less time cost.
arXiv Detail & Related papers (2023-07-13T04:08:16Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
arXiv Detail & Related papers (2023-07-10T03:59:42Z) - Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks [78.2700757742992]
Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries.
We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $ell_infty$-robust models and 3 datasets.
Our strongest adversarial attack outperforms all of the white-box components of AutoAttack ensemble.
arXiv Detail & Related papers (2022-12-15T17:44:31Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial examples attack based on random warm restart mechanism and
improved Nesterov momentum [0.0]
Some studies have pointed out that the deep learning model is vulnerable to attacks adversarial examples and makes false decisions.
We propose RWR-NM-PGD attack algorithm based on random warm restart mechanism and improved Nesterov momentum.
Our method has average attack success rate of 46.3077%, which is 27.19% higher than I-FGSM and 9.27% higher than PGD.
arXiv Detail & Related papers (2021-05-10T07:24:25Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.