Towards Logically Consistent Language Models via Probabilistic Reasoning
- URL: http://arxiv.org/abs/2404.12843v1
- Date: Fri, 19 Apr 2024 12:23:57 GMT
- Title: Towards Logically Consistent Language Models via Probabilistic Reasoning
- Authors: Diego Calanzone, Stefano Teso, Antonio Vergari,
- Abstract summary: Large language models (LLMs) are a promising venue for natural language understanding and generation tasks.
LLMs are prone to generate non-factual information and to contradict themselves when prompted to reason about beliefs of the world.
We introduce a training objective that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules.
- Score: 14.317886666902822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are a promising venue for natural language understanding and generation tasks. However, current LLMs are far from reliable: they are prone to generate non-factual information and, more crucially, to contradict themselves when prompted to reason about beliefs of the world. These problems are currently addressed with large scale fine-tuning or by delegating consistent reasoning to external tools. In this work, we strive for a middle ground and introduce a training objective based on principled probabilistic reasoning that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules. Fine-tuning with our loss on a limited set of facts enables our LLMs to be more logically consistent than previous baselines and allows them to extrapolate to unseen but semantically similar factual knowledge more systematically.
Related papers
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Rulebreakers Challenge: Revealing a Blind Spot in Large Language Models' Reasoning with Formal Logic [3.0648414540406703]
This study introduces the concept of "rulebreakers", which refers to instances where logical entailment diverges from factually acceptable inference.
We present RULEBREAKERS, a novel dataset for evaluating Large Language Models' ability to distinguish between rulebreakers and non-rulebreakers.
arXiv Detail & Related papers (2024-10-21T20:48:16Z) - Logically Consistent Language Models via Neuro-Symbolic Integration [14.317886666902822]
Large language models (LLMs) are a promising venue for natural language understanding and generation.
LLMs are prone to generating non-factual information and to contradicting themselves when prompted to reason about relations between entities of the world.
We introduce a loss based on neuro-symbolic reasoning that teaches an LLM to be logically consistent with an external set of facts and rules.
arXiv Detail & Related papers (2024-09-09T10:52:57Z) - Misinforming LLMs: vulnerabilities, challenges and opportunities [4.54019093815234]
Large Language Models (LLMs) have made significant advances in natural language processing, but their underlying mechanisms are often misunderstood.
This paper argues that current LLM architectures are inherently untrustworthy due to their reliance on correlations of sequential patterns of word embedding vectors.
Research into combining generative transformer-based models with fact bases and logic programming languages may lead to the development of trustworthy LLMs.
arXiv Detail & Related papers (2024-08-02T10:35:49Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.
If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.
To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Limits for Learning with Language Models [4.20859414811553]
We show that large language models (LLMs) are unable to learn concepts beyond the first level of the Borel Hierarchy.
LLMs will continue to operate without formal guarantees on tasks that require entailments and deep linguistic understanding.
arXiv Detail & Related papers (2023-06-21T12:11:31Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.