Rethinking with Retrieval: Faithful Large Language Model Inference
- URL: http://arxiv.org/abs/2301.00303v1
- Date: Sat, 31 Dec 2022 22:35:34 GMT
- Title: Rethinking with Retrieval: Faithful Large Language Model Inference
- Authors: Hangfeng He, Hongming Zhang, Dan Roth
- Abstract summary: We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
- Score: 91.66406351103484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the success of large language models (LLMs) in various natural
language processing (NLP) tasks, the stored knowledge in these models may
inevitably be incomplete, out-of-date, or incorrect. This motivates the need to
utilize external knowledge to assist LLMs. Unfortunately, current methods for
incorporating external knowledge often require additional training or
fine-tuning, which can be costly and may not be feasible for LLMs. To address
this issue, we propose a novel post-processing approach, rethinking with
retrieval (RR), which retrieves relevant external knowledge based on the
decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting.
This lightweight approach does not require additional training or fine-tuning
and is not limited by the input length of LLMs. We evaluate the effectiveness
of RR through extensive experiments with GPT-3 on three complex reasoning
tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our
results show that RR can produce more faithful explanations and improve the
performance of LLMs.
Related papers
- RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.
We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.
Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.
GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
We introduce a large language model (LLM) based approach to answer complex questions requiring multi-hop numerical reasoning over financial reports.
We use novel zero-shot prompts that guide the LLM to encode the required reasoning into a Python program or a domain specific language.
arXiv Detail & Related papers (2023-11-19T16:23:34Z) - Furthest Reasoning with Plan Assessment: Stable Reasoning Path with
Retrieval-Augmented Large Language Models [10.04323204974924]
Multi-Hop Question Answering (MHQA) stands as a widely discussed category.
Existing methods employ Large Language Models (LLMs) to generate reasoning paths and plans.
We propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA)
arXiv Detail & Related papers (2023-09-22T10:15:13Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.