論文の概要: CaBaFL: Asynchronous Federated Learning via Hierarchical Cache and Feature Balance
- arxiv url: http://arxiv.org/abs/2404.12850v1
- Date: Fri, 19 Apr 2024 12:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:07:01.789515
- Title: CaBaFL: Asynchronous Federated Learning via Hierarchical Cache and Feature Balance
- Title(参考訳): CaBaFL: 階層的なキャッシュと機能バランスによる非同期フェデレーション学習
- Authors: Zeke Xia, Ming Hu, Dengke Yan, Xiaofei Xie, Tianlin Li, Anran Li, Junlong Zhou, Mingsong Chen,
- Abstract要約: 有望な分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、AIoT(Artificial Intelligence of Things)アプリケーションで広く採用されている。
FLの効率性と推論能力は、トラグラーの存在と大規模なAIoTデバイス間のデータの不均衡により、著しく制限されている。
本稿では,階層型キャッシュベースのアグリゲーション機構と機能バランス誘導型デバイス選択戦略を含む,CaBaFLという新しいFLアプローチを提案する。
- 参考スコア(独自算出の注目度): 23.125185494897522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) as a promising distributed machine learning paradigm has been widely adopted in Artificial Intelligence of Things (AIoT) applications. However, the efficiency and inference capability of FL is seriously limited due to the presence of stragglers and data imbalance across massive AIoT devices, respectively. To address the above challenges, we present a novel asynchronous FL approach named CaBaFL, which includes a hierarchical Cache-based aggregation mechanism and a feature Balance-guided device selection strategy. CaBaFL maintains multiple intermediate models simultaneously for local training. The hierarchical cache-based aggregation mechanism enables each intermediate model to be trained on multiple devices to align the training time and mitigate the straggler issue. In specific, each intermediate model is stored in a low-level cache for local training and when it is trained by sufficient local devices, it will be stored in a high-level cache for aggregation. To address the problem of imbalanced data, the feature balance-guided device selection strategy in CaBaFL adopts the activation distribution as a metric, which enables each intermediate model to be trained across devices with totally balanced data distributions before aggregation. Experimental results show that compared with the state-of-the-art FL methods, CaBaFL achieves up to 9.26X training acceleration and 19.71\% accuracy improvements.
- Abstract(参考訳): 有望な分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、AIoT(Artificial Intelligence of Things)アプリケーションで広く採用されている。
しかし、FLの効率と推論能力は、トラグラーの存在と、巨大なAIoTデバイス間でのデータ不均衡のため、著しく制限されている。
上記の課題に対処するために,階層型キャッシュベースの集約機構と機能バランス誘導デバイス選択戦略を含む,CaBaFLという新しい非同期FLアプローチを提案する。
CaBaFLは、ローカルトレーニングのために複数の中間モデルを同時に維持する。
階層的なキャッシュベースのアグリゲーション機構により、各中間モデルを複数のデバイスでトレーニングし、トレーニング時間を調整し、ストラグラー問題を緩和することができる。
具体的には、各中間モデルはローカルトレーニングのために低レベルのキャッシュに格納され、十分なローカルデバイスによってトレーニングされた場合、集約のために高レベルのキャッシュに格納される。
不均衡データの問題を解決するため、CaBaFLにおける機能バランス誘導デバイス選択戦略では、アクティベーション分布をメトリックとして採用し、アグリゲーション前に完全にバランスの取れたデータ分布を持つデバイス間で各中間モデルをトレーニングすることができる。
実験の結果,CaBaFLは最先端のFL法と比較して最大9.26Xのトレーニングアクセラレーションと19.71\%の精度向上を達成した。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients [44.89061671579694]
フェデレートラーニング(FL)は、データのプライバシを保ちながら分散トレーニングを可能にするが、ストラグラーのスローあるいは無効なクライアントは、トレーニング時間を大幅に短縮し、パフォーマンスを低下させる。
深層ニューラルネットワークを深層スケールと幅ワイドスケーリングの両方を用いてサブモデルに効率的に分割するフレームワークであるネスト付きフェデレーションラーニング(NeFL)を提案する。
NeFLは、特に最低ケースのサブモデルでは、ベースラインアプローチに比べてパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-08-15T13:29:14Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - FedCAT: Towards Accurate Federated Learning via Device Concatenation [4.416919766772866]
Federated Learning(FL)は、すべてのデバイスが、ローカルデータのプライバシを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
非IIDシナリオでは、データの不均一性に起因する重みのばらつきにより、FLモデルの分類精度が大幅に低下する。
本稿では,Fed-Cat という新しいFLアプローチを導入し,提案したデバイス選択戦略とデバイス結合に基づく局所学習手法に基づいて,高精度なモデル精度を実現する。
論文 参考訳(メタデータ) (2022-02-23T10:08:43Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - HADFL: Heterogeneity-aware Decentralized Federated Learning Framework [1.3780739674182867]
HADFLは、異種デバイス上での分散非同期トレーニングをサポートするフレームワークである。
これにより、中央サーバの通信圧力を軽減し、不均一なコンピューティングパワーを効率的に利用し、最大3.15倍のスピードアップを達成することができる。
論文 参考訳(メタデータ) (2021-11-16T07:43:18Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL)は、新しく登場した分散機械学習(ML)フレームワークである。
本稿では,FLシステムにおけるトラグラー問題を排除するために,周期的なアグリゲーションを伴う非同期FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-23T18:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。