論文の概要: Zero-Shot Stitching in Reinforcement Learning using Relative Representations
- arxiv url: http://arxiv.org/abs/2404.12917v2
- Date: Tue, 7 May 2024 12:45:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:53:50.499403
- Title: Zero-Shot Stitching in Reinforcement Learning using Relative Representations
- Title(参考訳): 相対表現を用いた強化学習におけるゼロショットスティッチ
- Authors: Antonio Pio Ricciardi, Valentino Maiorca, Luca Moschella, Riccardo Marin, Emanuele Rodolà,
- Abstract要約: エージェントのコンポーネントを組み合わせることが可能であることを実証するために、潜伏表現を統一する最近の発展を活用している。
これにより、トレーニング中に見たことのない環境とタスクの組み合わせを処理できる、まったく新しいエージェントを作成することができます。
- 参考スコア(独自算出の注目度): 17.76990521486307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Reinforcement Learning is a popular and powerful framework that takes full advantage of the Deep Learning breakthrough. However, it is also known that variations in the input (e.g., different colors of the panorama due to the season of the year) or the task (e.g., changing the speed limit for a car to respect) could require complete retraining of the agents. In this work, we leverage recent developments in unifying latent representations to demonstrate that it is possible to combine the components of an agent, rather than retrain it from scratch. We build upon the recent relative representations framework and adapt it for Visual RL. This allows us to create completely new agents capable of handling environment-task combinations never seen during training. Our work paves the road toward a more accessible and flexible use of reinforcement learning.
- Abstract(参考訳): ビジュアル強化学習(Visual Reinforcement Learning)は、ディープラーニングのブレークスルーを最大限に活用する、人気があり強力なフレームワークである。
しかし、入力(例えば、季節によってパノラマの色が異なる)やタスク(例えば、車に対する速度制限の変更)のバリエーションは、エージェントの完全な再訓練を必要とすることも知られている。
本研究では,エージェントのコンポーネントをスクラッチから再訓練するのではなく組み合わせることが可能であることを示すために,潜在表現を統一する最近の発展を活用している。
我々は最近、相対表現フレームワークを構築し、それをVisual RLに適用する。
これにより、トレーニング中に見たことのない環境とタスクの組み合わせを処理できる、まったく新しいエージェントを作成することができます。
私たちの仕事は、よりアクセスしやすくフレキシブルな強化学習への道を開く。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Reusable Architecture Growth for Continual Stereo Matching [92.36221737921274]
我々は、教師付きおよび自己監督型の両方で、新しいシーンを継続的に学習するための、再利用可能なアーキテクチャ成長(RAG)フレームワークを紹介します。
RAGは、前のユニットを再利用し、良好な性能を得ることにより、成長中の高い再利用性を維持することができる。
また、推論時にシーン固有のアーキテクチャパスを適応的に選択するScene Routerモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-30T13:24:58Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
タスク境界において,タスクが終了し,他のタスク開始時に発生する新しいメカニズムを提案する。
CIFAR10やTinyImagenetなどのコンピュータビジョンデータセットのベンチマークで提案手法を評価する。
論文 参考訳(メタデータ) (2023-11-02T22:00:23Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - Meta-Learning with Variational Bayes [0.0]
生成メタ学習のより一般的な問題に対処する新しいアプローチを提案する。
我々の貢献は、AEVBフレームワークと平均場変動ベイズを活用し、高速適応潜在空間生成モデルを作成する。
我々の貢献の核心は新たな成果であり、広範囲の深層生成潜在変数モデルにおいて、関連するVB更新は生成ニューラルネットワークに依存しないことを示している。
論文 参考訳(メタデータ) (2021-03-03T09:02:01Z) - Essentials for Class Incremental Learning [43.306374557919646]
CIFAR-100とImageNetのクラスインクリメンタルな学習結果は、アプローチをシンプルに保ちながら、最先端の成果を大きなマージンで改善します。
論文 参考訳(メタデータ) (2021-02-18T18:01:06Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Reward Propagation Using Graph Convolutional Networks [61.32891095232801]
本稿では,グラフ表現学習のアイデアを活用した潜在機能学習フレームワークを提案する。
我々のアプローチは、強化学習の確率論的推論と組み合わせて、重要な要素として使用するグラフ畳み込みネットワークに依存している。
論文 参考訳(メタデータ) (2020-10-06T04:38:16Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Towards Backward-Compatible Representation Learning [86.39292571306395]
異なる次元であっても,従来の計算機能と互換性のある視覚的特徴を学習する方法を提案する。
これにより、埋め込みモデルを更新する際に、以前見たすべての画像の新機能の計算を回避できる。
本稿では、後方互換表現学習の第一歩として、後方互換学習(BCT)と呼ばれる埋め込みモデルを訓練するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-26T14:34:09Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
学習中の特徴を動的に変化させる機械学習モデルを提案する。
私たちの主な動機は、トレーニングプロセス中に小さなコンテンツでモデルを更新し、より説明力の少ない機能を大きなプールから新しいものに置き換えることです。
論文 参考訳(メタデータ) (2020-02-21T12:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。