論文の概要: R3L: Relative Representations for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.12917v3
- Date: Tue, 18 Feb 2025 15:17:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:48.094408
- Title: R3L: Relative Representations for Reinforcement Learning
- Title(参考訳): R3L:強化学習のための相対表現
- Authors: Antonio Pio Ricciardi, Valentino Maiorca, Luca Moschella, Riccardo Marin, Emanuele Rodolà,
- Abstract要約: 入力領域の変化(例えば、季節変化によるパノラマ色の変化)がエージェントのパフォーマンスを損なうことが知られている。
表現学習の分野での最近の進歩は、新しいモデルを作るためにコンポーネントを組み合わせる可能性を示している。
我々は、このフレームワークをVisual Reinforcement Learningの設定に適応させ、エージェントコンポーネントを組み合わせて新しいビジュアルタスクペアを効果的に処理できる新しいエージェントを作成する。
- 参考スコア(独自算出の注目度): 17.76990521486307
- License:
- Abstract: Visual Reinforcement Learning is a popular and powerful framework that takes full advantage of the Deep Learning breakthrough. It is known that variations in input domains (e.g., different panorama colors due to seasonal changes) or task domains (e.g., altering the target speed of a car) can disrupt agent performance, necessitating new training for each variation. Recent advancements in the field of representation learning have demonstrated the possibility of combining components from different neural networks to create new models in a zero-shot fashion. In this paper, we build upon relative representations, a framework that maps encoder embeddings to a universal space. We adapt this framework to the Visual Reinforcement Learning setting, allowing to combine agents components to create new agents capable of effectively handling novel visual-task pairs not encountered during training. Our findings highlight the potential for model reuse, significantly reducing the need for retraining and, consequently, the time and computational resources required.
- Abstract(参考訳): ビジュアル強化学習(Visual Reinforcement Learning)は、ディープラーニングのブレークスルーを最大限に活用する、人気があり強力なフレームワークである。
入力領域(季節変化によるパノラマ色の変化など)やタスク領域(自動車の目標速度の変更など)の変動がエージェント性能を損なう可能性があることが知られており、各変動に対する新たな訓練が必要である。
表現学習の分野での最近の進歩は、異なるニューラルネットワークのコンポーネントを組み合わせてゼロショット方式で新しいモデルを作成する可能性を実証している。
本稿では,エンコーダの埋め込みを普遍空間にマッピングするフレームワークである相対表現を構築した。
我々は、このフレームワークをVisual Reinforcement Learningの設定に適応させ、エージェントコンポーネントを組み合わせることで、トレーニング中に遭遇しない新しいビジュアルタスクペアを効果的に処理できる新しいエージェントを作成できる。
本研究は, モデル再利用の可能性を強調し, 再訓練の必要性を著しく低減し, 時間と計算資源の確保を図った。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Reusable Architecture Growth for Continual Stereo Matching [92.36221737921274]
我々は、教師付きおよび自己監督型の両方で、新しいシーンを継続的に学習するための、再利用可能なアーキテクチャ成長(RAG)フレームワークを紹介します。
RAGは、前のユニットを再利用し、良好な性能を得ることにより、成長中の高い再利用性を維持することができる。
また、推論時にシーン固有のアーキテクチャパスを適応的に選択するScene Routerモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-30T13:24:58Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
タスク境界において,タスクが終了し,他のタスク開始時に発生する新しいメカニズムを提案する。
CIFAR10やTinyImagenetなどのコンピュータビジョンデータセットのベンチマークで提案手法を評価する。
論文 参考訳(メタデータ) (2023-11-02T22:00:23Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - Meta-Learning with Variational Bayes [0.0]
生成メタ学習のより一般的な問題に対処する新しいアプローチを提案する。
我々の貢献は、AEVBフレームワークと平均場変動ベイズを活用し、高速適応潜在空間生成モデルを作成する。
我々の貢献の核心は新たな成果であり、広範囲の深層生成潜在変数モデルにおいて、関連するVB更新は生成ニューラルネットワークに依存しないことを示している。
論文 参考訳(メタデータ) (2021-03-03T09:02:01Z) - Essentials for Class Incremental Learning [43.306374557919646]
CIFAR-100とImageNetのクラスインクリメンタルな学習結果は、アプローチをシンプルに保ちながら、最先端の成果を大きなマージンで改善します。
論文 参考訳(メタデータ) (2021-02-18T18:01:06Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Reward Propagation Using Graph Convolutional Networks [61.32891095232801]
本稿では,グラフ表現学習のアイデアを活用した潜在機能学習フレームワークを提案する。
我々のアプローチは、強化学習の確率論的推論と組み合わせて、重要な要素として使用するグラフ畳み込みネットワークに依存している。
論文 参考訳(メタデータ) (2020-10-06T04:38:16Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Towards Backward-Compatible Representation Learning [86.39292571306395]
異なる次元であっても,従来の計算機能と互換性のある視覚的特徴を学習する方法を提案する。
これにより、埋め込みモデルを更新する際に、以前見たすべての画像の新機能の計算を回避できる。
本稿では、後方互換表現学習の第一歩として、後方互換学習(BCT)と呼ばれる埋め込みモデルを訓練するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-26T14:34:09Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
学習中の特徴を動的に変化させる機械学習モデルを提案する。
私たちの主な動機は、トレーニングプロセス中に小さなコンテンツでモデルを更新し、より説明力の少ない機能を大きなプールから新しいものに置き換えることです。
論文 参考訳(メタデータ) (2020-02-21T12:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。