論文の概要: Data Alignment for Zero-Shot Concept Generation in Dermatology AI
- arxiv url: http://arxiv.org/abs/2404.13043v2
- Date: Sun, 8 Sep 2024 17:46:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 02:52:35.476206
- Title: Data Alignment for Zero-Shot Concept Generation in Dermatology AI
- Title(参考訳): 皮膚科AIにおけるゼロショット概念生成のためのデータアライメント
- Authors: Soham Gadgil, Mahtab Bigverdi,
- Abstract要約: ゼロショット機能を提供するCLIPのようなファンデーションモデルは、この課題を軽減するのに役立つ。
CLIPは、ドメイン固有のイメージキャプチャペアを使用して微調整することで、分類性能を改善することができる。
私たちのゴールは、これらのモデルを使用して、臨床辞書とCLIPの事前学習データに使用される自然言語の両方に適合するキャプションテキストを生成することです。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI in dermatology is evolving at a rapid pace but the major limitation to training trustworthy classifiers is the scarcity of data with ground-truth concept level labels, which are meta-labels semantically meaningful to humans. Foundation models like CLIP providing zero-shot capabilities can help alleviate this challenge by leveraging vast amounts of image-caption pairs available on the internet. CLIP can be fine-tuned using domain specific image-caption pairs to improve classification performance. However, CLIP's pre-training data is not well-aligned with the medical jargon that clinicians use to perform diagnoses. The development of large language models (LLMs) in recent years has led to the possibility of leveraging the expressive nature of these models to generate rich text. Our goal is to use these models to generate caption text that aligns well with both the clinical lexicon and with the natural human language used in CLIP's pre-training data. Starting with captions used for images in PubMed articles, we extend them by passing the raw captions through an LLM fine-tuned on the field's several textbooks. We find that using captions generated by an expressive fine-tuned LLM like GPT-3.5 improves downstream zero-shot concept classification performance.
- Abstract(参考訳): 皮膚科学におけるAIは急速に進化しているが、信頼できる分類器を訓練するための大きな制限は、人間にとって意味のあるメタラベルである、地味な概念レベルラベルによるデータの不足である。
ゼロショット機能を提供するCLIPのようなファンデーションモデルは、インターネット上で利用可能な膨大な画像キャプチャペアを活用することで、この課題を軽減するのに役立ちます。
CLIPは、ドメイン固有のイメージキャプチャペアを使用して微調整することで、分類性能を改善することができる。
しかし、CLIPの事前トレーニングデータは、臨床医が診断を行うために使用する医学用語とよく一致していない。
近年の大規模言語モデル(LLM)の発展により、これらのモデルの表現性を活用してリッチテキストを生成する可能性が高まっている。
我々のゴールは、これらのモデルを用いて臨床語彙とCLIPの事前学習データに使用される自然言語の両方とよく一致した字幕テキストを生成することである。
PubMedの記事の画像のキャプションから始めて、フィールドのいくつかの教科書に微調整されたLLMを通して、原文のキャプションを渡すことによって拡張する。
GPT-3.5のような表現的微調整LDMによって生成されたキャプションを使用することで、下流のゼロショット概念分類性能が向上することがわかった。
関連論文リスト
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) モデルは、表現を学ぶためにテキストと視覚的モダリティ間の相互情報を最大化する。
そこで本研究では,テキスト・ツー・イメージ・ジェネレータを用いて,文脈内学習による「ハード」の負の字幕生成と,それに対応する負のイメージ生成が解となることを示す。
提案手法はTripletCLIPと呼ばれ,CLIPの構成能力を向上し,SugarCrepeベンチマークでは9%以上向上した。
論文 参考訳(メタデータ) (2024-11-04T19:24:59Z) - TROPE: TRaining-Free Object-Part Enhancement for Seamlessly Improving Fine-Grained Zero-Shot Image Captioning [30.506968671472517]
我々はTRaining-Free Object-Part Enhancement (TROPE)を紹介する。
TROPEは、オブジェクト検出の提案と自然言語処理技術を使用して、追加のオブジェクト部分の詳細でベースキャプションを豊かにする。
評価の結果,TROPEはテスト対象のゼロショットICアプローチすべてに対して一貫して性能を向上し,細粒度ICデータセットの最先端化を実現していることがわかった。
論文 参考訳(メタデータ) (2024-09-30T05:24:01Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
本稿では,視覚言語事前学習のための新しいフレームワークであるSILCを紹介する。
SILCは、局所-言語対応学習を自己蒸留で簡単に追加することで、画像テキストのコントラスト学習を改善する。
指数移動平均(EMA)教師モデルから局所像の特徴を抽出することにより,検出やセグメンテーションといった密集した予測タスクにおけるモデル性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-20T08:44:47Z) - CgT-GAN: CLIP-guided Text GAN for Image Captioning [48.276753091051035]
本稿では,CLIP-Guided text GAN (CgT-GAN) を提案する。
我々は,外部テキストコーパスのフレーズを模倣するために,CgT-GANの教育に逆行訓練を用いる。
CgT-GANは、すべてのメトリクスで最先端のメソッドを著しく上回る。
論文 参考訳(メタデータ) (2023-08-23T10:25:37Z) - Text-to-Image Diffusion Models are Zero-Shot Classifiers [8.26990105697146]
ゼロショット分類器として評価する手法を提案し,テキスト・画像拡散モデルについて検討した。
本手法を安定拡散およびイメージnに適用し,モデル知識のきめ細かい面を探索する。
彼らは幅広いゼロショット画像分類データセットでCLIPと競合する。
論文 参考訳(メタデータ) (2023-03-27T14:15:17Z) - Is a Caption Worth a Thousand Images? A Controlled Study for
Representation Learning [88.5382122413913]
本研究では,従来の画像のみの手法よりも伝達可能な表現を持つ視覚モデルが得られるかを検討した。
画像のみの手法は、より多くの画像データでトレーニングされた場合でも、CLIPの転送性能と一致しないことがわかった。
この結果から,CLIPが既存の事前学習データセットに存在する言語情報を活用できるように,シンプルな処方薬を考案した。
論文 参考訳(メタデータ) (2022-07-15T17:50:51Z) - Fine-grained Image Captioning with CLIP Reward [104.71533106301598]
ウェブから大量の画像テキストペアをトレーニングしたマルチモーダルエンコーダであるCLIPを用いて、マルチモーダル類似性を計算し、報酬関数として利用する。
また、追加のテキストアノテーションを必要としない文法を改善するために、CLIPテキストエンコーダの簡単な微調整戦略を提案する。
テキスト・ツー・イメージ検索とFineCapEvalの実験において、提案したCLIP誘導モデルは、CIDEr最適化モデルよりも顕著なキャプションを生成する。
論文 参考訳(メタデータ) (2022-05-26T02:46:09Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
ここでは、CLIPが入力のすべての関連する意味的部分に焦点を当てることを保証するために、損失項を追加する新しい説明可能性に基づくアプローチを提案する。
本手法は, 追加訓練や微調整を伴わずに, 認識率の向上を図っている。
論文 参考訳(メタデータ) (2022-04-11T07:16:39Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
対照的に、CLIP(Contrastive Language- Image Pre-Training)は、オープンボキャブラリゼロショット画像認識において画期的な進歩を遂げた。
DenseCLIP+はSOTAトランスダクティブなゼロショットセマンティックセグメンテーション法を大きなマージンで上回る。
我々の発見は、DenseCLIPが高密度予測タスクの信頼性の高い新たな監視源となることを示唆している。
論文 参考訳(メタデータ) (2021-12-02T09:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。