Unified Scene Representation and Reconstruction for 3D Large Language Models
- URL: http://arxiv.org/abs/2404.13044v1
- Date: Fri, 19 Apr 2024 17:58:04 GMT
- Title: Unified Scene Representation and Reconstruction for 3D Large Language Models
- Authors: Tao Chu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Qiong Liu, Jiaqi Wang,
- Abstract summary: Existing approaches extract point clouds either from ground truth (GT) geometry or 3D scenes reconstructed by auxiliary models.
We introduce Uni3DR2 extracts 3D geometric and semantic aware representation features via the frozen 2D foundation models.
Our learned 3D representations not only contribute to the reconstruction process but also provide valuable knowledge for LLMs.
- Score: 40.693839066536505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling Large Language Models (LLMs) to interact with 3D environments is challenging. Existing approaches extract point clouds either from ground truth (GT) geometry or 3D scenes reconstructed by auxiliary models. Text-image aligned 2D features from CLIP are then lifted to point clouds, which serve as inputs for LLMs. However, this solution lacks the establishment of 3D point-to-point connections, leading to a deficiency of spatial structure information. Concurrently, the absence of integration and unification between the geometric and semantic representations of the scene culminates in a diminished level of 3D scene understanding. In this paper, we demonstrate the importance of having a unified scene representation and reconstruction framework, which is essential for LLMs in 3D scenes. Specifically, we introduce Uni3DR^2 extracts 3D geometric and semantic aware representation features via the frozen pre-trained 2D foundation models (e.g., CLIP and SAM) and a multi-scale aggregate 3D decoder. Our learned 3D representations not only contribute to the reconstruction process but also provide valuable knowledge for LLMs. Experimental results validate that our Uni3DR^2 yields convincing gains over the baseline on the 3D reconstruction dataset ScanNet (increasing F-Score by +1.8\%). When applied to LLMs, our Uni3DR^2-LLM exhibits superior performance over the baseline on the 3D vision-language understanding dataset ScanQA (increasing BLEU-1 by +4.0\% and +4.2\% on the val set and test set, respectively). Furthermore, it outperforms the state-of-the-art method that uses additional GT point clouds on both ScanQA and 3DMV-VQA.
Related papers
- 3UR-LLM: An End-to-End Multimodal Large Language Model for 3D Scene Understanding [49.15555885075644]
We develop pipeline based on open-source 2D MLLMs and LLMs to generate high-quality 3D-text pairs.
We introduce the 3UR-LLM model, an end-to-end 3D MLLM designed for precise interpretation of 3D scenes.
arXiv Detail & Related papers (2025-01-14T03:50:23Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLM treats 3D scenes as dynamic videos and incorporates 3D position encoding into these representations.
Our model achieves state-of-the-art performance on several 3D scene understanding benchmarks.
arXiv Detail & Related papers (2024-11-30T14:28:53Z) - SPARTUN3D: Situated Spatial Understanding of 3D World in Large Language Models [45.28780381341979]
We introduce a scalable situated 3D dataset, named Spartun3D, that incorporates various situated spatial reasoning tasks.
We also propose Spartun3D-LLM, built on an existing 3D-based LLM but integrated with a novel situated spatial alignment module.
arXiv Detail & Related papers (2024-10-04T19:22:20Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
arXiv Detail & Related papers (2022-10-09T13:38:48Z) - Prompt-guided Scene Generation for 3D Zero-Shot Learning [8.658191774247944]
We propose a prompt-guided 3D scene generation and supervision method to augment 3D data to learn the network better.
First, we merge point clouds of two 3D models in certain ways described by a prompt. The prompt acts like the annotation describing each 3D scene.
We have achieved state-of-the-art ZSL and generalized ZSL performance on synthetic (ModelNet40, ModelNet10) and real-scanned (ScanOjbectNN) 3D object datasets.
arXiv Detail & Related papers (2022-09-29T11:24:33Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.