論文の概要: On-Demand Earth System Data Cubes
- arxiv url: http://arxiv.org/abs/2404.13105v1
- Date: Fri, 19 Apr 2024 13:50:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:28:09.471634
- Title: On-Demand Earth System Data Cubes
- Title(参考訳): オン・デマンド・アース・システム・データ・キューブ
- Authors: David Montero, César Aybar, Chaonan Ji, Guido Kraemer, Maximilian Söchting, Khalil Teber, Miguel D. Mahecha,
- Abstract要約: ESDCは構造化され直感的なデータ分析フレームワークを提供する。
ESDCは、幅広いAI駆動タスクに理想的だ。
我々は、AIにフォーカスしたESDCを簡単に生成できるように設計されたオープンソースのPythonツールであるcuboを紹介する。
- 参考スコア(独自算出の注目度): 2.062646422366945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in Earth system science have seen a surge in diverse datasets. Earth System Data Cubes (ESDCs) have been introduced to efficiently handle this influx of high-dimensional data. ESDCs offer a structured, intuitive framework for data analysis, organising information within spatio-temporal grids. The structured nature of ESDCs unlocks significant opportunities for Artificial Intelligence (AI) applications. By providing well-organised data, ESDCs are ideally suited for a wide range of sophisticated AI-driven tasks. An automated framework for creating AI-focused ESDCs with minimal user input could significantly accelerate the generation of task-specific training data. Here we introduce cubo, an open-source Python tool designed for easy generation of AI-focused ESDCs. Utilising collections in SpatioTemporal Asset Catalogs (STAC) that are stored as Cloud Optimised GeoTIFFs (COGs), cubo efficiently creates ESDCs, requiring only central coordinates, spatial resolution, edge size, and time range.
- Abstract(参考訳): 地球系科学の進歩により、多様なデータセットが急増した。
地球系データキューブ(ESDC)は、この高次元データの流入を効率的に処理するために導入された。
ESDCはデータ分析のための構造化された直感的なフレームワークを提供し、時空間グリッド内で情報を整理する。
ESDCの構造的な性質は、人工知能(AI)アプリケーションにとって重要な機会を解放する。
十分に整理されたデータを提供することで、ESDCは幅広い高度なAI駆動タスクに最適である。
最小限のユーザ入力でAIにフォーカスしたESDCを作成するための自動化フレームワークは、タスク固有のトレーニングデータの生成を大幅に加速する可能性がある。
ここでは、AIにフォーカスしたESDCを簡単に生成できるように設計されたオープンソースのPythonツールであるcuboを紹介する。
Cloud Optimized GeoTIFFs (COG) として格納されるSpatioTemporal Asset Catalogs (STAC) のコレクションを利用することで、cubo は ESDC を効率的に生成し、中央座標、空間解像度、エッジサイズ、時間範囲のみを必要とする。
関連論文リスト
- Are We Ready for Real-Time LiDAR Semantic Segmentation in Autonomous Driving? [42.348499880894686]
シーンセマンティックセグメンテーションは、3次元空間データを専門のディープニューラルネットワークと直接統合することで実現できる。
本研究では, NVIDIA Jetson プラットフォーム上でのリソース制約推論の性能と性能を解析し, 様々な3次元セマンティックセマンティックセマンティクス手法について検討する。
論文 参考訳(メタデータ) (2024-10-10T20:47:33Z) - Earth System Data Cubes: Avenues for advancing Earth system research [4.408949931570938]
地球系データキューブ(ESDC)は、このデータの洪水をシンプルで堅牢なフォーマットに変換するのに適したソリューションの1つとして登場した。
ESDCは、データをテンポラリグリッドを備えた分析可能なフォーマットに整理することで、これを実現している。
新たなクラウドベースの技術に照らして、データの潜在能力を最大限に実現するための障壁がある。
論文 参考訳(メタデータ) (2024-08-05T09:50:16Z) - TSTEM: A Cognitive Platform for Collecting Cyber Threat Intelligence in the Wild [0.06597195879147556]
オープンソースからサイバー脅威情報(CTI)を抽出することは、急速に拡大する防衛戦略である。
従来の研究では、抽出プロセスの個々のコンポーネントの改善に焦点が当てられていた。
コミュニティには、ストリーミングCTIデータパイプラインを野放しに展開するオープンソースプラットフォームがない。
論文 参考訳(メタデータ) (2024-02-15T14:29:21Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - The GOOSE Dataset for Perception in Unstructured Environments [3.0408645115035036]
本研究では,非構造屋外環境を対象とした包括的データセットを提案する。
GOOSEデータセットには10万のラベル付きイメージとポイントクラウドが含まれており、さまざまな最先端セグメンテーションモデルをトレーニングするために使用される。
このイニシアチブは、既存のデータセットのシームレスなインクルージョンを可能にし、非構造化環境で動作しているさまざまなロボットの知覚能力を高めるための、共通のフレームワークを確立することを目的としている。
論文 参考訳(メタデータ) (2023-10-25T17:20:38Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - DC-Check: A Data-Centric AI checklist to guide the development of
reliable machine learning systems [81.21462458089142]
データ中心のAIは、信頼できるエンドツーエンドパイプラインを可能にする統一パラダイムとして登場しています。
データ中心の考慮事項を抽出する実行可能なチェックリストスタイルのフレームワークであるDC-Checkを提案する。
この開発におけるデータ中心のレンズは、システム開発に先立って思考力と透明性を促進することを目的としている。
論文 参考訳(メタデータ) (2022-11-09T17:32:09Z) - Paradigm selection for Data Fusion of SAR and Multispectral Sentinel
data applied to Land-Cover Classification [63.072664304695465]
本稿では、畳み込みニューラルネットワーク(CNN)に基づく4つのデータ融合パラダイムを分析し、実装する。
目標は、最良のデータ融合フレームワークを選択するための体系的な手順を提供することであり、その結果、最高の分類結果が得られる。
この手順は、土地被覆分類のために検証されているが、他のケースに転送することができる。
論文 参考訳(メタデータ) (2021-06-18T11:36:54Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。