From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
- URL: http://arxiv.org/abs/2404.13131v1
- Date: Fri, 19 Apr 2024 18:36:14 GMT
- Title: From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
- Authors: Tianqi Kou,
- Abstract summary: Two goals - improving replicability and accountability of Machine Learning research.
This paper posits that reconceptualizing replicability can help bridge the gap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two goals - improving replicability and accountability of Machine Learning research respectively, have accrued much attention from the AI ethics and the Machine Learning community. Despite sharing the measures of improving transparency, the two goals are discussed in different registers - replicability registers with scientific reasoning whereas accountability registers with ethical reasoning. Given the existing challenge of the Responsibility Gap - holding Machine Learning scientists accountable for Machine Learning harms due to them being far from sites of application, this paper posits that reconceptualizing replicability can help bridge the gap. Through a shift from model performance replicability to claim replicability, Machine Learning scientists can be held accountable for producing non-replicable claims that are prone to eliciting harm due to misuse and misinterpretation. In this paper, I make the following contributions. First, I define and distinguish two forms of replicability for ML research that can aid constructive conversations around replicability. Second, I formulate an argument for claim-replicability's advantage over model performance replicability in justifying assigning accountability to Machine Learning scientists for producing non-replicable claims and show how it enacts a sense of responsibility that is actionable. In addition, I characterize the implementation of claim replicability as more of a social project than a technical one by discussing its competing epistemological principles, practical implications on Circulating Reference, Interpretative Labor, and research communication.
Related papers
- UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations [71.79210031338464]
We show how to unify dense retrieval and response generation for large language models in conversation.<n>We conduct joint fine-tuning with different objectives and design two mechanisms to reduce the inconsistency risks.<n>The evaluations on five conversational search datasets demonstrate that our unified model can mutually improve both tasks and outperform the existing baselines.
arXiv Detail & Related papers (2025-07-09T17:02:40Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - PSSD: Making Large Language Models Self-denial via Human Psyche Structure [5.057375783924452]
We present PSSD, which refers to and implements the human psyche structure such that three distinct and interconnected roles contribute to human reasoning.
Extensive experiments demonstrate that the proposed design not only better enhance reasoning capabilities, but also seamlessly integrate with current models.
arXiv Detail & Related papers (2025-02-03T13:37:21Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Unveiling and Addressing Pseudo Forgetting in Large Language Models [17.888328120571245]
We show that the performance degradation on previous tasks is not attributed to a loss of capabilities, but rather to the failure of the instructions to activate the appropriate model abilities.<n>We propose Rationale-Guidance Difficulty based Replay (RGD-R) framework that dynamically allocates replay data based on the model's ability to correctly leverage the intrinsic capabilities.
arXiv Detail & Related papers (2024-11-18T14:28:04Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction.
In intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown.
We show that intrinsic self-correction can be progressively improved, allowing it to approach a converged state.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - What is Reproducibility in Artificial Intelligence and Machine Learning Research? [0.7373617024876725]
We introduce a validation framework that clarifies the roles and definitions of key validation efforts.
This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts.
arXiv Detail & Related papers (2024-04-29T18:51:20Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks.
Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer.
This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale.
We propose a robust post-thinking mechanism to generate answers before rationale.
arXiv Detail & Related papers (2024-04-14T07:19:27Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Replicable Reinforcement Learning [15.857503103543308]
We provide a provably replicable algorithm for parallel value iteration, and a provably replicable version of R-max in the episodic setting.
These are the first formal replicability results for control problems, which present different challenges for replication than batch learning settings.
arXiv Detail & Related papers (2023-05-24T16:05:15Z) - Defining Replicability of Prediction Rules [2.4366811507669124]
I propose an approach for defining replicability for prediction rules.
I focus specifically on the meaning of "consistent results" in typical utilization contexts.
arXiv Detail & Related papers (2023-04-30T13:27:55Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Abduction and Argumentation for Explainable Machine Learning: A Position
Survey [2.28438857884398]
This paper presents Abduction and Argumentation as two principled forms for reasoning.
It fleshes out the fundamental role that they can play within Machine Learning.
arXiv Detail & Related papers (2020-10-24T13:23:44Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.