Spectral Convolutional Conditional Neural Processes
- URL: http://arxiv.org/abs/2404.13182v2
- Date: Sat, 3 Aug 2024 17:24:37 GMT
- Title: Spectral Convolutional Conditional Neural Processes
- Authors: Peiman Mohseni, Nick Duffield,
- Abstract summary: Conditional Neural Processes (CNPs) constitute a family of probabilistic models that harness the flexibility of neural networks to parameterize processes.
We propose Spectral Convolutional Conditional Neural Processes (SConvCNPs), a new addition to the NPs family that allows for more efficient representation of functions in the frequency domain.
- Score: 4.52069311861025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional Neural Processes (CNPs) constitute a family of probabilistic models that harness the flexibility of neural networks to parameterize stochastic processes. Their capability to furnish well-calibrated predictions, combined with simple maximum-likelihood training, has established them as appealing solutions for addressing various learning problems, with a particular emphasis on meta-learning. A prominent member of this family, Convolutional Conditional Neural Processes (ConvCNPs), utilizes convolution to explicitly introduce translation equivariance as an inductive bias. However, ConvCNP's reliance on local discrete kernels in its convolution layers can pose challenges in capturing long-range dependencies and complex patterns within the data, especially when dealing with limited and irregularly sampled observations from a new task. Building on the successes of Fourier neural operators (FNOs) for approximating the solution operators of parametric partial differential equations (PDEs), we propose Spectral Convolutional Conditional Neural Processes (SConvCNPs), a new addition to the NPs family that allows for more efficient representation of functions in the frequency domain.
Related papers
- Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
We introduce Neural Regression (NPR), a novel framework specifically developed for learning solution operators in Partial Differential Equations (PDEs)
NPR employs Physics-Informed Neural Network (PINN, Raissi et al., 2021) techniques to regress Neural Network (NN) parameters.
The framework shows remarkable adaptability to new initial and boundary conditions, allowing for rapid fine-tuning and inference.
arXiv Detail & Related papers (2024-03-19T14:30:56Z) - Deep Stochastic Processes via Functional Markov Transition Operators [59.55961312230447]
We introduce a new class of Processes (SPs) constructed by stacking sequences of neural parameterised Markov transition operators in function space.
We prove that these Markov transition operators can preserve the exchangeability and consistency of SPs.
arXiv Detail & Related papers (2023-05-24T21:15:23Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
We propose Versatile Neural Processes (VNP), which largely increases the capability of approximating functions.
Specifically, we introduce a bottleneck encoder that produces fewer and informative context tokens, relieving the high computational cost.
We demonstrate the effectiveness of the proposed VNP on a variety of tasks involving 1D, 2D and 3D signals.
arXiv Detail & Related papers (2023-01-21T04:08:46Z) - Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
Sequence Modeling [26.377099481072992]
We propose Transformer Neural Processes (TNPs) for uncertainty-aware meta learning.
We learn TNPs via an autoregressive likelihood-based objective and instantiate it with a novel transformer-based architecture.
We show that TNPs achieve state-of-the-art performance on various benchmark problems.
arXiv Detail & Related papers (2022-07-09T02:28:58Z) - Neural Diffusion Processes [12.744250155946503]
We propose Neural Diffusion Processes (NDPs), a novel approach that learns to sample from a rich distribution over functions through its finite marginals.
We empirically show that NDPs can capture functional distributions close to the true Bayesian posterior.
NDPs enable a variety of downstream tasks, including regression, implicit hyper marginalisation, non-Gaussian posterior prediction and global optimisation.
arXiv Detail & Related papers (2022-06-08T16:13:04Z) - The Gaussian Neural Process [39.81327564209865]
We provide a rigorous analysis of the standard maximum-likelihood objective used to train conditional NPs.
We propose a new member to the Neural Process family called the Neural Process (GNP), which models predictive correlations, incorporates translation, provides universal approximation guarantees, and demonstrates encouraging performance.
arXiv Detail & Related papers (2021-01-10T19:15:27Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
Continuous input signals like images and time series that are irregularly sampled or have missing values are challenging for existing deep learning methods.
We propose Probabilistic Convolutional Neural Networks which represent features as Gaussian processes (GPs)
We then define a convolutional layer as the evolution of a PDE defined on this GP, followed by a nonlinearity.
In experiments we show that our approach yields a $3times$ reduction of error from the previous state of the art on the SuperPixel-MNIST dataset and competitive performance on the medical time2012 dataset PhysioNet.
arXiv Detail & Related papers (2020-10-21T10:08:21Z) - Bootstrapping Neural Processes [114.97111530885093]
Neural Processes (NPs) implicitly define a broad class of processes with neural networks.
NPs still rely on an assumption that uncertainty in processes is modeled by a single latent variable.
We propose the Boostrapping Neural Process (BNP), a novel extension of the NP family using the bootstrap.
arXiv Detail & Related papers (2020-08-07T02:23:34Z) - Meta-Learning Stationary Stochastic Process Prediction with
Convolutional Neural Processes [32.02612871707347]
We propose ConvNP, which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution.
We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D, regression image completion, and various tasks with real-world-temporal data.
arXiv Detail & Related papers (2020-07-02T18:25:27Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.