Probabilistic Numeric Convolutional Neural Networks
- URL: http://arxiv.org/abs/2010.10876v1
- Date: Wed, 21 Oct 2020 10:08:21 GMT
- Title: Probabilistic Numeric Convolutional Neural Networks
- Authors: Marc Finzi, Roberto Bondesan, Max Welling
- Abstract summary: Continuous input signals like images and time series that are irregularly sampled or have missing values are challenging for existing deep learning methods.
We propose Probabilistic Convolutional Neural Networks which represent features as Gaussian processes (GPs)
We then define a convolutional layer as the evolution of a PDE defined on this GP, followed by a nonlinearity.
In experiments we show that our approach yields a $3times$ reduction of error from the previous state of the art on the SuperPixel-MNIST dataset and competitive performance on the medical time2012 dataset PhysioNet.
- Score: 80.42120128330411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous input signals like images and time series that are irregularly
sampled or have missing values are challenging for existing deep learning
methods. Coherently defined feature representations must depend on the values
in unobserved regions of the input. Drawing from the work in probabilistic
numerics, we propose Probabilistic Numeric Convolutional Neural Networks which
represent features as Gaussian processes (GPs), providing a probabilistic
description of discretization error. We then define a convolutional layer as
the evolution of a PDE defined on this GP, followed by a nonlinearity. This
approach also naturally admits steerable equivariant convolutions under e.g.
the rotation group. In experiments we show that our approach yields a $3\times$
reduction of error from the previous state of the art on the SuperPixel-MNIST
dataset and competitive performance on the medical time series dataset
PhysioNet2012.
Related papers
- Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal Verification [0.22499166814992438]
abstraction-based solutions based on Gaussian process (GP) regression have become popular for their ability to learn a representation of the latent system from data with a quantified error.
We show that the binary-tree Gaussian process (BTGP) allows us to construct an interval Markov chain model of the unknown system.
We provide a delocalized error quantification via a unified formula even when the true dynamics do not live in the function space of the BTGP.
arXiv Detail & Related papers (2024-07-15T11:49:44Z) - Spectral Convolutional Conditional Neural Processes [4.52069311861025]
Conditional Neural Processes (CNPs) constitute a family of probabilistic models that harness the flexibility of neural networks to parameterize processes.
We propose Spectral Convolutional Conditional Neural Processes (SConvCNPs), a new addition to the NPs family that allows for more efficient representation of functions in the frequency domain.
arXiv Detail & Related papers (2024-04-19T21:13:18Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Graph Convolutional Neural Networks for Body Force Prediction [0.0]
A graph based data-driven model is presented to perform inference on fields defined on an unstructured mesh.
The network can infer from field samples at different resolutions, and is invariant to the order in which the measurements within each sample are presented.
arXiv Detail & Related papers (2020-12-03T19:53:47Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Meta-Learning Stationary Stochastic Process Prediction with
Convolutional Neural Processes [32.02612871707347]
We propose ConvNP, which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution.
We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D, regression image completion, and various tasks with real-world-temporal data.
arXiv Detail & Related papers (2020-07-02T18:25:27Z) - Latent Transformations for Discrete-Data Normalising Flows [15.005894753472894]
We present an unbiased alternative where rather than deterministically parameterising one transformation, we predict a distribution over latent transformations.
With transformations, the marginal likelihood of the data is differentiable and gradient-based learning is possible via score function estimation.
We observe great challenges with both deterministic proxy gradients and unbiased score function estimation.
arXiv Detail & Related papers (2020-06-11T11:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.