Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning
- URL: http://arxiv.org/abs/2404.13194v1
- Date: Fri, 19 Apr 2024 21:54:20 GMT
- Title: Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning
- Authors: Zhixin Pan, Emma Andrews, Laura Chang, Prabhat Mishra,
- Abstract summary: Data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks.
We propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks.
- Score: 3.049887057143419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is widely used to mitigate data bias in the training dataset. However, data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks. In this paper, we propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks. Specifically, we maintain the fairness of the trained model with diffusion-based data augmentation, and then utilize multi-shard unlearning to remove identifying information of original data from the ML model for protection against privacy attacks. Experimental evaluation across diverse datasets demonstrates that our approach can achieve significant improvements in bias reduction as well as robustness against state-of-the-art privacy attacks.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks [8.225819874406238]
We propose a novel availability approach termed Matching Attack (PMA)
PMA is the first availability attack that works when only a portion of data can be perturbed.
We show that PMA outperforms existing methods, achieving significant model performance degradation when a part of the training data is perturbed.
arXiv Detail & Related papers (2024-07-02T17:15:12Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Machine unlearning via GAN [2.406359246841227]
Machine learning models, especially deep models, may unintentionally remember information about their training data.
We present a GAN-based algorithm to delete data in deep models, which significantly improves deleting speed compared to retraining from scratch.
arXiv Detail & Related papers (2021-11-22T05:28:57Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Privacy Enhancing Machine Learning via Removal of Unwanted Dependencies [21.97951347784442]
This paper studies new variants of supervised and adversarial learning methods, which remove the sensitive information in the data before they are sent out for a particular application.
The explored methods optimize privacy preserving feature mappings and predictive models simultaneously in an end-to-end fashion.
Experimental results on mobile sensing and face datasets demonstrate that our models can successfully maintain the utility performances of predictive models while causing sensitive predictions to perform poorly.
arXiv Detail & Related papers (2020-07-30T19:55:10Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
We propose new MI attacks to utilize the information of augmented data.
We establish the optimal membership inference when the model is trained with augmented data.
arXiv Detail & Related papers (2020-07-21T02:21:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.