Machine unlearning via GAN
- URL: http://arxiv.org/abs/2111.11869v1
- Date: Mon, 22 Nov 2021 05:28:57 GMT
- Title: Machine unlearning via GAN
- Authors: Kongyang Chen and Yao Huang and Yiwen Wang
- Abstract summary: Machine learning models, especially deep models, may unintentionally remember information about their training data.
We present a GAN-based algorithm to delete data in deep models, which significantly improves deleting speed compared to retraining from scratch.
- Score: 2.406359246841227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models, especially deep models, may unintentionally remember
information about their training data. Malicious attackers can thus pilfer some
property about training data by attacking the model via membership inference
attack or model inversion attack. Some regulations, such as the EU's GDPR, have
enacted "The Right to Be Forgotten" to protect users' data privacy, enhancing
individuals' sovereignty over their data. Therefore, removing training data
information from a trained model has become a critical issue. In this paper, we
present a GAN-based algorithm to delete data in deep models, which
significantly improves deleting speed compared to retraining from scratch,
especially in complicated scenarios. We have experimented on five commonly used
datasets, and the experimental results show the efficiency of our method.
Related papers
- Releasing Malevolence from Benevolence: The Menace of Benign Data on Machine Unlearning [28.35038726318893]
Machine learning models trained on vast amounts of real or synthetic data often achieve outstanding predictive performance across various domains.
To address privacy concerns, machine unlearning has been proposed to erase specific data samples from models.
We introduce the Unlearning Usability Attack to distill data distribution information into a small set of benign data.
arXiv Detail & Related papers (2024-07-06T15:42:28Z) - Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable [30.22146634953896]
We show how to mount a near-perfect attack on the deleted data point from linear regression models.
Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
arXiv Detail & Related papers (2024-05-30T17:27:44Z) - Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning [3.049887057143419]
Data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks.
We propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks.
arXiv Detail & Related papers (2024-04-19T21:54:20Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD) is a fast, performant, and does not require long-term storage of the training data.
We present a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data.
arXiv Detail & Related papers (2023-08-15T11:30:45Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
Deleting the collected data is often insufficient to guarantee data privacy.
UnlearnSPN is an algorithm that removes the influence of single data points from a trained sum-product network.
arXiv Detail & Related papers (2022-10-04T08:22:37Z) - Hard to Forget: Poisoning Attacks on Certified Machine Unlearning [13.516740881682903]
We consider an attacker aiming to increase the computational cost of data removal.
We derive and empirically investigate a poisoning attack on certified machine unlearning.
arXiv Detail & Related papers (2021-09-17T01:00:46Z) - Amnesiac Machine Learning [15.680008735220785]
Recently enacted General Data Protection Regulation affects any data holder that has data on European Union residents.
Models are vulnerable to information leaking attacks such as model inversion attacks.
We present two data removal methods, namely Unlearning and Amnesiac Unlearning, that enable model owners to protect themselves against such attacks while being compliant with regulations.
arXiv Detail & Related papers (2020-10-21T13:14:17Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Certified Data Removal from Machine Learning Models [79.91502073022602]
Good data stewardship requires removal of data at the request of the data's owner.
This raises the question if and how a trained machine-learning model, which implicitly stores information about its training data, should be affected by such a removal request.
We study this problem by defining certified removal: a very strong theoretical guarantee that a model from which data is removed cannot be distinguished from a model that never observed the data to begin with.
arXiv Detail & Related papers (2019-11-08T03:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.