論文の概要: Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
- arxiv url: http://arxiv.org/abs/2404.13224v1
- Date: Sat, 20 Apr 2024 01:14:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:58:55.198493
- Title: Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
- Title(参考訳): タブラルデータに対する特徴空間属性を組み込んだモデルに基づく対実的説明
- Authors: Yuta Sumiya, Hayaru shouno,
- Abstract要約: 機械学習モデルは、大規模なデータセットからパターンを正確に予測する。
入力摂動の導入による予測を説明する対実的説明手法が顕著である。
現在の手法では、各入力変更の最適化問題を解く必要があり、計算コストがかかる。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learning models, which are known to accurately predict patterns from large datasets, are crucial in decision making. Consequently, counterfactual explanations-methods explaining predictions by introducing input perturbations-have become prominent. These perturbations often suggest ways to alter the predictions, leading to actionable recommendations. However, the current techniques require resolving the optimization problems for each input change, rendering them computationally expensive. In addition, traditional encoding methods inadequately address the perturbations of categorical variables in tabular data. Thus, this study propose FastDCFlow, an efficient counterfactual explanation method using normalizing flows. The proposed method captures complex data distributions, learns meaningful latent spaces that retain proximity, and improves predictions. For categorical variables, we employed TargetEncoding, which respects ordinal relationships and includes perturbation costs. The proposed method outperformed existing methods in multiple metrics, striking a balance between trade offs for counterfactual explanations. The source code is available in the following repository: https://github.com/sumugit/FastDCFlow.
- Abstract(参考訳): 大規模なデータセットからパターンを正確に予測することが知られている機械学習モデルは、意思決定において極めて重要である。
その結果、入力摂動を導入して予測を説明する反事実的説明手法が顕著になった。
これらの混乱は、しばしば予測を変更する方法を示唆し、実行可能なレコメンデーションをもたらす。
しかし、現在の手法では、各入力変更の最適化問題を解く必要があり、計算コストがかかる。
さらに、従来の符号化手法は表データのカテゴリ変数の摂動に不適切に対処する。
そこで本研究では,正規化フローを用いた効率的な対実的説明法であるFastDCFlowを提案する。
提案手法は, 複雑なデータ分布を捕捉し, 近接性を保持する有意義な潜在空間を学習し, 予測を改善する。
分類変数に対しては、順序関係を尊重し、摂動コストを含むTargetEncodingを採用しました。
提案手法は, 既存の手法を複数の指標で比較し, 対実的説明のためのトレードオフのバランスを崩した。
ソースコードは以下のリポジトリで入手できる。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Training Data Attribution via Approximate Unrolled Differentiation [8.87519936904341]
影響関数のような暗黙の微分に基づく手法は、計算的に効率的になるが、過小評価を考慮できない。
我々は、影響関数のような公式を用いて計算される近似アンローリングベースのTDA手法であるSourceを紹介する。
論文 参考訳(メタデータ) (2024-05-20T17:17:44Z) - Obtaining Explainable Classification Models using Distributionally
Robust Optimization [12.511155426574563]
特徴値規則の集合を用いて構築した一般化線形モデルについて検討する。
ルールセットの間隔と予測精度の間には、固有のトレードオフが存在する。
我々はこれらの競合する要因に同時に対処するルールセットの集合を学習するための新しい定式化を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:45:34Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
Tabular Data using Normalizing Flows [11.108866104714627]
対実的説明は、望ましい結果を達成するためにサンプルの摂動を生成する解釈可能な機械学習の一形態である。
可変オートエンコーダ (VAE) を用いて実現可能な改善を実現するために, 最先端の対実的説明法を提案する。
我々は,連続的特徴と分類的特徴の混合型に対して正規化フローを利用する,堅牢で効率的な対実的説明フレームワークであるCeFlowを設計する。
論文 参考訳(メタデータ) (2023-03-26T09:51:04Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - Kernel-Whitening: Overcome Dataset Bias with Isotropic Sentence
Embedding [51.48582649050054]
符号化文の特徴間の相関関係を解消する表現正規化手法を提案する。
またNystromカーネル近似法であるKernel-Whiteningを提案する。
実験により,Kernel-Whiteningは分布内精度を維持しつつ,分布外データセット上でのBERTの性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2022-10-14T05:56:38Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
サンプルをしきい値にすることでスパース分布を学習できる変分スパース符号化の新しい手法を提案する。
まず,線形発生器を訓練し,その性能,統計的効率,勾配推定に優れることを示す。
論文 参考訳(メタデータ) (2022-05-07T14:49:50Z) - Causality-based Counterfactual Explanation for Classification Models [11.108866104714627]
本稿では,プロトタイプに基づく対実的説明フレームワーク(ProCE)を提案する。
ProCEは、カウンターファクトデータの特徴の根底にある因果関係を保存することができる。
さらに,提案手法を応用した多目的遺伝的アルゴリズムを考案した。
論文 参考訳(メタデータ) (2021-05-03T09:25:59Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。