論文の概要: Comparative Analysis on Snowmelt-Driven Streamflow Forecasting Using Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2404.13327v1
- Date: Sat, 20 Apr 2024 09:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:29:41.200922
- Title: Comparative Analysis on Snowmelt-Driven Streamflow Forecasting Using Machine Learning Techniques
- Title(参考訳): 機械学習を用いた融雪駆動流速予測の比較解析
- Authors: Ukesh Thapa, Bipun Man Pati, Samit Thapa, Dhiraj Pyakurel, Anup Shrestha,
- Abstract要約: 我々は、時相畳み込みネットワーク(TCN)を利用した、最先端(SOTA)深層学習シーケンシャルモデルを提案する。
提案モデルの性能を評価するため,SVR(Support Vector Regression),LSTM(Long Short Term Memory),Transformer(Transformer)など,他の一般的なモデルとの比較分析を行った。
平均値では、TNが他のモデルより優れており、MAEは0.011、RMSEは0.023、R2$は0.991、KGEは0.992、NSEは0.991である。
- 参考スコア(独自算出の注目度): 0.20971479389679332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of machine learning techniques has led to their widespread application in various domains including water resources. However, snowmelt modeling remains an area that has not been extensively explored. In this study, we propose a state-of-the-art (SOTA) deep learning sequential model, leveraging the Temporal Convolutional Network (TCN), for snowmelt-driven discharge modeling in the Himalayan basin of the Hindu Kush Himalayan Region. To evaluate the performance of our proposed model, we conducted a comparative analysis with other popular models including Support Vector Regression (SVR), Long Short Term Memory (LSTM), and Transformer. Furthermore, Nested cross-validation (CV) is used with five outer folds and three inner folds, and hyper-parameter tuning is performed on the inner folds. To evaluate the performance of the model mean absolute error (MAE), root mean square error (RMSE), R square ($R^{2}$), Kling-Gupta Efficiency (KGE), and Nash-Sutcliffe Efficiency (NSE) are computed for each outer fold. The average metrics revealed that TCN outperformed the other models, with an average MAE of 0.011, RMSE of 0.023, $R^{2}$ of 0.991, KGE of 0.992, and NSE of 0.991. The findings of this study demonstrate the effectiveness of the deep learning model as compared to traditional machine learning approaches for snowmelt-driven streamflow forecasting. Moreover, the superior performance of TCN highlights its potential as a promising deep learning model for similar hydrological applications.
- Abstract(参考訳): 機械学習技術の急速な進歩は、水資源を含む様々な領域に広く応用されている。
しかし, 融雪モデルはまだ広く調査されていない領域である。
本研究では,ヒンズー・クシュ・ヒマラヤ地方のヒマラヤ盆地における融雪駆動放電モデルにおいて,時相畳み込みネットワーク(TCN)を利用した最先端の深層学習モデルを提案する。
提案モデルの性能を評価するため,SVR(Support Vector Regression),LSTM(Long Short Term Memory),Transformer(Transformer)など,他の一般的なモデルとの比較分析を行った。
さらに、5つの外折りと3つの内折りにNested Cross-validation(CV)を使用し、内折りにハイパーパラメータチューニングを行う。
モデル平均絶対誤差(MAE)、ルート平均二乗誤差(RMSE)、R平方(R^{2}$)、クリング・グプタ効率(KGE)、ナッシュ・サトクリフ効率(NSE)を各外周毎に算出する。
平均値では、TNが他のモデルより優れており、MAEは0.011、RMSEは0.023、R^{2}$は0.991、KGEは0.992、NSEは0.991である。
本研究は,融雪駆動流速予測における従来の機械学習手法と比較して,ディープラーニングモデルの有効性を示すものである。
さらに、TCNの優れた性能は、同様の水文学応用のための有望なディープラーニングモデルとしての可能性を強調している。
関連論文リスト
- Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
このチュートリアルは、下流の報酬関数を最適化するための微調整拡散モデルのための方法を網羅的に調査する。
PPO,微分可能最適化,報酬重み付きMLE,値重み付きサンプリング,経路整合性学習など,様々なRLアルゴリズムの適用について説明する。
論文 参考訳(メタデータ) (2024-07-18T17:35:32Z) - Towards Generalized Hydrological Forecasting using Transformer Models for 120-Hour Streamflow Prediction [0.34530027457862006]
本研究では,米国アイオワ州における120時間流速予測のためのTransformerモデルの有効性について検討した。
我々はTransformerモデルの性能を3つのディープラーニングモデル(LSTM, GRU, Seq2Seq)とPersistenceアプローチと比較した。
本研究はトランスフォーマーモデルの優れた性能を示し、高い中央値のNSEおよびKGEスコアを維持し、最も低いNRMSE値を示す。
論文 参考訳(メタデータ) (2024-06-11T17:26:14Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Machine Learning Emulation of Urban Land Surface Processes [0.0]
我々は,22の都市地表面モデル(ULSM)から平均的なフラックスを訓練した都市ニューラルネットワーク(UNN)を開発した。
基準のULSM(Town Energy Balance; TEB)と比較すると、UNNはフラックス観測よりも精度が高く、計算コストも少なく、パラメータも少ない。
現在,本アプリケーションはトレーニングデータ(1サイト)に制約されているが,複数のULSMの強度をMLを用いて組み合わせることで表面フラックスのモデリングを改善する新しい手法を示す。
論文 参考訳(メタデータ) (2021-12-21T18:47:46Z) - Rainfall-runoff prediction using a Gustafson-Kessel clustering based
Takagi-Sugeno Fuzzy model [0.0]
降雨流出モデルは、物理的アプローチまたはシステムベースのアプローチを用いて表面流出を予測する。
本稿では,Gustafson-Kesselクラスタリングに基づくTS Fuzzyモデルを用いた降雨流出モデルを提案する。
論文 参考訳(メタデータ) (2021-08-22T10:02:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Convolutional conditional neural processes for local climate downscaling [31.887343372542805]
畳み込み条件付きニューラルプロセス(convCNPs)による温度と降水量の多地点統計的ダウンスケーリングに関する新しいモデルが提示された。
コンブCNPモデルでは, 温度と降水量の両方において, 既存のダウンスケーリング技術よりも優れていた。
極端な降水現象の表象では大きな改善が見られる。
論文 参考訳(メタデータ) (2021-01-20T03:45:21Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - High Temporal Resolution Rainfall Runoff Modelling Using
Long-Short-Term-Memory (LSTM) Networks [0.03694429692322631]
このモデルは、大洪水で知られたテキサス州ヒューストンの流域で試験された。
LSTMネットワークは、ネットワークの入力と出力の間の長期的依存関係を学習する能力により、RRを高解像度でモデル化することができた。
論文 参考訳(メタデータ) (2020-02-07T00:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。