DMesh: A Differentiable Mesh Representation
- URL: http://arxiv.org/abs/2404.13445v2
- Date: Sat, 1 Jun 2024 23:28:55 GMT
- Title: DMesh: A Differentiable Mesh Representation
- Authors: Sanghyun Son, Matheus Gadelha, Yang Zhou, Zexiang Xu, Ming C. Lin, Yi Zhou,
- Abstract summary: DMesh is a differentiable representation of general 3D triangular meshes.
We first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT)
We formulate probability of faces to exist on the actual surface in a differentiable manner based on the WDT.
- Score: 40.800084296073415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a differentiable representation, DMesh, for general 3D triangular meshes. DMesh considers both the geometry and connectivity information of a mesh. In our design, we first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT), and select triangular faces on the tetrahedra to define the final mesh. We formulate probability of faces to exist on the actual surface in a differentiable manner based on the WDT. This enables DMesh to represent meshes of various topology in a differentiable way, and allows us to reconstruct the mesh under various observations, such as point cloud and multi-view images using gradient-based optimization. The source code and full paper is available at: https://sonsang.github.io/dmesh-project.
Related papers
- PivotMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance [66.40153183581894]
We introduce a generic and scalable mesh generation framework PivotMesh.
PivotMesh makes an initial attempt to extend the native mesh generation to large-scale datasets.
We show that PivotMesh can generate compact and sharp 3D meshes across various categories.
arXiv Detail & Related papers (2024-05-27T07:13:13Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
We propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations.
Our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods.
arXiv Detail & Related papers (2022-10-05T16:52:25Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
We introduce a novel and flexible convolutional neural network (CNN) model, called Laplacian2Mesh, for 3D triangle mesh.
Mesh pooling is applied to expand the receptive field of the network by the multi-space transformation of Laplacian.
Experiments on various learning tasks applied to 3D meshes demonstrate the effectiveness and efficiency of Laplacian2Mesh.
arXiv Detail & Related papers (2022-02-01T10:10:13Z) - N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks [69.94313958962165]
We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction.
We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space.
Our approach can handle complex cloth meshes with up to $100$K triangles and scenes with various objects corresponding to SMPL humans, Non-SMPL humans, or rigid bodies.
arXiv Detail & Related papers (2021-12-13T03:13:11Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define DeepMesh -- end-to-end differentiable mesh representation that can vary its topology.
arXiv Detail & Related papers (2021-06-20T20:12:41Z) - DualConv: Dual Mesh Convolutional Networks for Shape Correspondence [44.94765770516059]
Convolutional neural networks have been extremely successful for 2D images and are readily extended to handle 3D voxel data.
In this paper we explore how these networks can be extended to the dual face-based representation of triangular meshes.
Our experiments demonstrate that building additionally convolutional models that explicitly leverage the neighborhood size regularity of dual meshes enables learning shape representations that perform on par or better than previous approaches.
arXiv Detail & Related papers (2021-03-23T11:22:47Z) - MeshWalker: Deep Mesh Understanding by Random Walks [19.594977587417247]
We look at the most popular representation of 3D shapes in computer graphics - a triangular mesh - and ask how it can be utilized within deep learning.
This paper proposes a very different approach, termed MeshWalker, to learn the shape directly from a given mesh.
We show that our approach achieves state-of-the-art results for two fundamental shape analysis tasks.
arXiv Detail & Related papers (2020-06-09T15:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.