DMesh++: An Efficient Differentiable Mesh for Complex Shapes
- URL: http://arxiv.org/abs/2412.16776v1
- Date: Sat, 21 Dec 2024 21:16:03 GMT
- Title: DMesh++: An Efficient Differentiable Mesh for Complex Shapes
- Authors: Sanghyun Son, Matheus Gadelha, Yang Zhou, Matthew Fisher, Zexiang Xu, Yi-Ling Qiao, Ming C. Lin, Yi Zhou,
- Abstract summary: We introduce a new differentiable mesh processing method in 2D and 3D.
We present an algorithm that adapts the mesh resolution to local geometry in 2D for efficient representation.
We demonstrate the effectiveness of our approach on 2D point cloud and 3D multi-view reconstruction tasks.
- Score: 51.75054400014161
- License:
- Abstract: Recent probabilistic methods for 3D triangular meshes capture diverse shapes by differentiable mesh connectivity, but face high computational costs with increased shape details. We introduce a new differentiable mesh processing method in 2D and 3D that addresses this challenge and efficiently handles meshes with intricate structures. Additionally, we present an algorithm that adapts the mesh resolution to local geometry in 2D for efficient representation. We demonstrate the effectiveness of our approach on 2D point cloud and 3D multi-view reconstruction tasks. Visit our project page (https://sonsang.github.io/dmesh2-project) for source code and supplementary material.
Related papers
- Occupancy-Based Dual Contouring [12.944046673902415]
We introduce a dual contouring method that provides state-of-the-art performance for occupancy functions.
Our method is learning-free and carefully designed to maximize the use of GPU parallelization.
arXiv Detail & Related papers (2024-09-20T11:32:21Z) - DMesh: A Differentiable Mesh Representation [40.800084296073415]
DMesh is a differentiable representation of general 3D triangular meshes.
We first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT)
We formulate probability of faces to exist on the actual surface in a differentiable manner based on the WDT.
arXiv Detail & Related papers (2024-04-20T18:52:51Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
We introduce a novel and flexible convolutional neural network (CNN) model, called Laplacian2Mesh, for 3D triangle mesh.
Mesh pooling is applied to expand the receptive field of the network by the multi-space transformation of Laplacian.
Experiments on various learning tasks applied to 3D meshes demonstrate the effectiveness and efficiency of Laplacian2Mesh.
arXiv Detail & Related papers (2022-02-01T10:10:13Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - Mesh Convolution with Continuous Filters for 3D Surface Parsing [101.25796935464648]
We propose a series of modular operations for effective geometric feature learning from 3D triangle meshes.
Our mesh convolutions exploit spherical harmonics as orthonormal bases to create continuous convolutional filters.
We further contribute a novel hierarchical neural network for perceptual parsing of 3D surfaces, named PicassoNet++.
arXiv Detail & Related papers (2021-12-03T09:16:49Z) - Subdivision-Based Mesh Convolution Networks [38.09613983540932]
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision.
This paper introduces a novel CNN framework, named SubdivNet, for 3D triangle meshes with Loop subdivision sequence connectivity.
Experiments on mesh classification, segmentation, correspondence, and retrieval from the real-world demonstrate the effectiveness and efficiency of SubdivNet.
arXiv Detail & Related papers (2021-06-04T06:50:34Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.