Real-Time Safe Control of Neural Network Dynamic Models with Sound Approximation
- URL: http://arxiv.org/abs/2404.13456v2
- Date: Mon, 20 May 2024 21:57:31 GMT
- Title: Real-Time Safe Control of Neural Network Dynamic Models with Sound Approximation
- Authors: Hanjiang Hu, Jianglin Lan, Changliu Liu,
- Abstract summary: We propose to use a sound approximation of the neural network dynamic models (NNDM) in the control synthesis.
We mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems.
Experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline.
- Score: 11.622680091231393
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings. The code is available at https://github.com/intelligent-control-lab/BOND.
Related papers
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
We propose a novel safety filter that relies on convex optimization to ensure safety for a neural network (NN) system.
We demonstrate the efficacy of the proposed framework numerically on a nonlinear pendulum system.
arXiv Detail & Related papers (2023-08-16T01:30:13Z) - Approximate non-linear model predictive control with safety-augmented neural networks [7.670727843779155]
This paper studies approximations of model predictive control (MPC) controllers via neural networks (NNs) to achieve fast online evaluation.
We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies.
arXiv Detail & Related papers (2023-04-19T11:27:06Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions [0.05249805590164901]
Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars.
In this paper, we propose FitAct, a low-cost approach to enhance the error resilience of DNNs by deploying fine-grained post-trainable activation functions.
arXiv Detail & Related papers (2021-12-27T07:07:50Z) - Safe Control with Neural Network Dynamic Models [2.512827436728378]
We propose MIND-SIS, the first method to derive safe control laws for Neural Network Dynamic Models (NNDM)
MIND-SIS guarantees forward invariance and finite convergence.
It has been numerically validated that MIND-SIS achieves safe and optimal control of NNDM.
arXiv Detail & Related papers (2021-10-03T22:13:49Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - Neural Contraction Metrics for Robust Estimation and Control: A Convex
Optimization Approach [6.646482960350819]
This paper presents a new deep learning-based framework for robust nonlinear estimation and control using the concept of a Neural Contraction Metric (NCM)
The NCM uses a deep long short-term memory recurrent neural network for a global approximation of an optimal contraction metric.
We demonstrate how to exploit NCMs to design an online optimal estimator and controller for nonlinear systems with bounded disturbances utilizing their duality.
arXiv Detail & Related papers (2020-06-08T05:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.