Accelerating the Generation of Molecular Conformations with Progressive Distillation of Equivariant Latent Diffusion Models
- URL: http://arxiv.org/abs/2404.13491v1
- Date: Sun, 21 Apr 2024 00:04:38 GMT
- Title: Accelerating the Generation of Molecular Conformations with Progressive Distillation of Equivariant Latent Diffusion Models
- Authors: Romain Lacombe, Neal Vaidya,
- Abstract summary: We introduce Equivariant Latent Progressive Distillation, a fast sampling algorithm that preserves geometric equivariance and accelerates generation from latent diffusion models.
Our experiments demonstrate up to 7.5x gains in sampling speed with limited degradation in molecular stability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in fast sampling methods for diffusion models have demonstrated significant potential to accelerate generation on image modalities. We apply these methods to 3-dimensional molecular conformations by building on the recently introduced GeoLDM equivariant latent diffusion model (Xu et al., 2023). We evaluate trade-offs between speed gains and quality loss, as measured by molecular conformation structural stability. We introduce Equivariant Latent Progressive Distillation, a fast sampling algorithm that preserves geometric equivariance and accelerates generation from latent diffusion models. Our experiments demonstrate up to 7.5x gains in sampling speed with limited degradation in molecular stability. These results suggest this accelerated sampling method has strong potential for high-throughput in silico molecular conformations screening in computational biochemistry, drug discovery, and life sciences applications.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Chemistry-Inspired Diffusion with Non-Differentiable Guidance [10.573577157257564]
Recent advances in diffusion models have shown remarkable potential in the conditional generation of novel molecules.
We propose a novel approach that leverage domain knowledge from quantum chemistry as a non-differentiable oracle to guide an unconditional diffusion model.
Instead of relying on neural networks, the oracle provides accurate guidance in the form of estimated gradients, allowing the diffusion process to sample from a conditional distribution specified by quantum chemistry.
arXiv Detail & Related papers (2024-10-09T03:10:21Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
We propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation.
Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Molecular Conformation Generation via Shifting Scores [21.986775283620883]
We propose a novel molecular conformation generation approach driven by the observation that the disintegration of a molecule can be viewed as casting increasing force fields to its composing atoms.
The corresponding generative modeling ensures a feasible inter-atomic distance geometry and exhibits time reversibility.
arXiv Detail & Related papers (2023-09-12T07:39:43Z) - Diffusion Sampling with Momentum for Mitigating Divergence Artifacts [10.181486597424486]
We investigate the potential causes of divergence artifacts and suggest that the small stability regions of numerical methods could be the principal cause.
The first technique involves the incorporation of Heavy Ball (HB) momentum, a well-known technique for improving optimization, into existing diffusion numerical methods to expand their stability regions.
The second technique, called Generalized Heavy Ball (GHVB), constructs a new high-order method that offers a variable trade-off between accuracy and artifact suppression.
arXiv Detail & Related papers (2023-07-20T14:37:30Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.