Simultaneous action of a single photon at two remote places
- URL: http://arxiv.org/abs/2404.13545v3
- Date: Sat, 27 Apr 2024 09:44:31 GMT
- Title: Simultaneous action of a single photon at two remote places
- Authors: Lida Zhang,
- Abstract summary: A single quantum particle diffracted after a pinhole could in principle produce an action in two or several places on a hemispherical imaging screen.
This is considered in a cascade quantum system composed of two spatially distant cavities each coupled to a qubit.
We show that a single-photon pulse incident on the two cavities can simultaneously excite the two remote qubits and lead to two subsequent single-photon detection events.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Motivated by Einstein's thought experiment that a single quantum particle diffracted after a pinhole could in principle produce an action in two or several places on a hemispherical imaging screen, here we explore theoretically the possibility to simultaneously detect the action of a single photon at two remote places. This is considered in a cascade quantum system composed of two spatially distant cavities each coupled to a qubit in the ultrastrong coupling regime. We show that a single-photon pulse incident on the two cavities can simultaneously excite the two remote qubits and lead to two subsequent single-photon detection events even when the separation between them is comparable to the spatial length of the photon pulse. Our results not only uncover new facets of photons at a fundamental level but also have practical applications, such as the generation of remote entanglement by a single photon through a dissipative channel which is otherwise unattainable in the strong-coupling regime.
Related papers
- Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Interference of cavity light by a single atom acting as a double slit [5.951810889409693]
We show that when a single atom tunneling in a double well is coupled to an optical ring cavity, the interference phenomena arise.
Being driven by an external laser in the dispersive regime, the field emitted by the atom into the cavity exhibits an interference pattern.
Our work opens ways to manipulate photons with controllable external states of atoms for quantum information applications.
arXiv Detail & Related papers (2023-06-12T11:36:24Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Will a single two-level atom simultaneously scatter two photons? [2.9785870773347645]
Two photons are never detected simultaneously in the light scattered by the emitter.
This is commonly interpreted by saying that a single two-level quantum emitter can only absorb and emit single photons.
Our results offer fundamental insights into the quantum-mechanical interaction between light and matter.
arXiv Detail & Related papers (2022-09-06T14:56:36Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Single photon wavefront-splitting interference: An illustration of the
light quantum in action [0.0]
We present a new realization of the textbook experiment consisting in single-photon interference based on the pulsed, optically excited photoluminescence of a single colour centre in a diamond nanocrystal.
arXiv Detail & Related papers (2020-11-25T11:51:02Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.