Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap
- URL: http://arxiv.org/abs/2404.13573v2
- Date: Sat, 27 Apr 2024 15:10:55 GMT
- Title: Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap
- Authors: Bowen Qu, Xiaoyu Liang, Shangkun Sun, Wei Gao,
- Abstract summary: We categorize the assessment of AIGC video quality into three dimensions: visual harmony, video-text consistency, and domain distribution gap.
For each dimension, we design specific modules to provide a comprehensive quality assessment of AIGC videos.
Our research identifies significant variations in visual quality, fluidity, and style among videos generated by different text-to-video models.
- Score: 4.922783970210658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent advancements in Text-to-Video Artificial Intelligence Generated Content (AIGC) have been remarkable. Compared with traditional videos, the assessment of AIGC videos encounters various challenges: visual inconsistency that defy common sense, discrepancies between content and the textual prompt, and distribution gap between various generative models, etc. Target at these challenges, in this work, we categorize the assessment of AIGC video quality into three dimensions: visual harmony, video-text consistency, and domain distribution gap. For each dimension, we design specific modules to provide a comprehensive quality assessment of AIGC videos. Furthermore, our research identifies significant variations in visual quality, fluidity, and style among videos generated by different text-to-video models. Predicting the source generative model can make the AIGC video features more discriminative, which enhances the quality assessment performance. The proposed method was used in the third-place winner of the NTIRE 2024 Quality Assessment for AI-Generated Content - Track 2 Video, demonstrating its effectiveness. Code will be available at https://github.com/Coobiw/TriVQA.
Related papers
- AIGV-Assessor: Benchmarking and Evaluating the Perceptual Quality of Text-to-Video Generation with LMM [54.44479359918971]
We first present AIGVQA-DB, a large-scale dataset comprising 36,576 AIGVs generated by 15 advanced text-to-video models using 1,048 prompts.
We then introduce AIGV-Assessor, a novel VQA model that leverages intricate quality attributes to capture precise video quality scores and pair video preferences.
arXiv Detail & Related papers (2024-11-26T08:43:15Z) - VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
Video Quality Assessment (VQA) is a classic field in low-level visual perception.
Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can enhance markedly low-level visual quality evaluation.
We introduce the VQA2 Instruction dataset - the first visual question answering instruction dataset that focuses on video quality assessment.
The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos.
arXiv Detail & Related papers (2024-11-06T09:39:52Z) - Q-Bench-Video: Benchmarking the Video Quality Understanding of LMMs [76.15356325947731]
We introduce Q-Bench-Video, a new benchmark specifically designed to evaluate LMMs' proficiency in discerning video quality.
We collect a total of 2,378 question-answer pairs and test them on 12 open-source & 5 proprietary LMMs.
Our findings indicate that while LMMs have a foundational understanding of video quality, their performance remains incomplete and imprecise, with a notable discrepancy compared to human performance.
arXiv Detail & Related papers (2024-09-30T08:05:00Z) - Advancing Video Quality Assessment for AIGC [17.23281750562252]
We propose a novel loss function that combines mean absolute error with cross-entropy loss to mitigate inter-frame quality inconsistencies.
We also introduce the innovative S2CNet technique to retain critical content, while leveraging adversarial training to enhance the model's generalization capabilities.
arXiv Detail & Related papers (2024-09-23T10:36:22Z) - Benchmarking AIGC Video Quality Assessment: A Dataset and Unified Model [54.69882562863726]
We try to systemically investigate the AIGC-VQA problem from both subjective and objective quality assessment perspectives.
We evaluate the perceptual quality of AIGC videos from three dimensions: spatial quality, temporal quality, and text-to-video alignment.
We propose a Unify Generated Video Quality assessment (UGVQ) model to comprehensively and accurately evaluate the quality of AIGC videos.
arXiv Detail & Related papers (2024-07-31T07:54:26Z) - CLIPVQA:Video Quality Assessment via CLIP [56.94085651315878]
We propose an efficient CLIP-based Transformer method for the VQA problem ( CLIPVQA)
The proposed CLIPVQA achieves new state-of-the-art VQA performance and up to 37% better generalizability than existing benchmark VQA methods.
arXiv Detail & Related papers (2024-07-06T02:32:28Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
We establish the first large-scale Kaleidoscope short Video database for Quality assessment, KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos.
We propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models.
arXiv Detail & Related papers (2024-02-11T14:37:54Z) - AIGCBench: Comprehensive Evaluation of Image-to-Video Content Generated
by AI [1.1035305628305816]
This paper introduces AIGCBench, a pioneering comprehensive benchmark designed to evaluate a variety of video generation tasks.
A varied and open-domain image-text dataset that evaluates different state-of-the-art algorithms under equivalent conditions.
We employ a novel text combiner and GPT-4 to create rich text prompts, which are then used to generate images via advanced Text-to-Image models.
arXiv Detail & Related papers (2024-01-03T10:08:40Z) - Towards Explainable In-the-Wild Video Quality Assessment: A Database and
a Language-Prompted Approach [52.07084862209754]
We collect over two million opinions on 4,543 in-the-wild videos on 13 dimensions of quality-related factors.
Specifically, we ask the subjects to label among a positive, a negative, and a neutral choice for each dimension.
These explanation-level opinions allow us to measure the relationships between specific quality factors and abstract subjective quality ratings.
arXiv Detail & Related papers (2023-05-22T05:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.