Construction of quantum wavefunctions for non-separable but integrable
two-dimensional Hamiltonian systems by means of the boundary values on the
classical caustics
- URL: http://arxiv.org/abs/2004.13413v1
- Date: Tue, 28 Apr 2020 10:43:28 GMT
- Title: Construction of quantum wavefunctions for non-separable but integrable
two-dimensional Hamiltonian systems by means of the boundary values on the
classical caustics
- Authors: Mario Fusco Girard
- Abstract summary: It is possible to construct the quantum wave functions for non-separable but integrable two-dimensional Hamiltonian systems.
The method is applied both to the Schrodinger equation, and to the quantum Hamilton-Jacobi equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is shown that it is possible to construct the quantum wave functions for
non-separable but integrable two-dimensional Hamiltonian systems, by solving
suitable Dirichlet boundary values problems inside and outside the regions
spanned by particular families of classical trajectories, in one-to-one
correspondence with the quantum state. The method is applied both to the
Schrodinger equation, and to the quantum Hamilton-Jacobi equation. The boundary
values are obtained by integrating the one-dim equations on the caustics arcs
enveloping the classical trajectories. This approach gives the same results as
the usual methods, and furthermore clarifies the links between quantum and
classical mechanics.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Phase-space gaussian ensemble quantum camouflage [0.0]
We extend the phase-space description of the Weyl-Wigner quantum mechanics to a subset of non-linear Hamiltonians in position and momentum.
For gaussian statistical ensembles, the exact phase-space profile of the quantum fluctuations over the classical trajectories are found.
arXiv Detail & Related papers (2024-09-24T18:14:07Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Quantum Simulation for Quantum Dynamics with Artificial Boundary
Conditions [28.46014452281448]
It is necessary to use artificial boundary conditions (ABC) to confine quantum dynamics within a fixed domain.
The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms can not be directly applied.
This paper utilizes a recently introduced Schr"odingerisation method that converts non-Hermitian dynamics to a Schr"odinger form.
arXiv Detail & Related papers (2023-04-03T00:45:08Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - The quantum Hamilton Jacobi equation and the link between classical and
quantum mechanics [0.0]
We study how the classical Hamilton's principal and characteristic functions are generated from the solutions of the quantum Hamilton-Jacobi equation.
While in the classically forbidden regions these quantum quantities directly tend to the classical ones, this is not the case in the allowed regions.
arXiv Detail & Related papers (2022-03-14T11:19:43Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.