論文の概要: Mixture of LoRA Experts
- arxiv url: http://arxiv.org/abs/2404.13628v1
- Date: Sun, 21 Apr 2024 11:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:11:42.970961
- Title: Mixture of LoRA Experts
- Title(参考訳): LoRAエキスパートの混在
- Authors: Xun Wu, Shaohan Huang, Furu Wei,
- Abstract要約: 本稿では,階層的制御と未分散分岐選択を利用する LoRA Experts (MoLE) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を実現する。
- 参考スコア(独自算出の注目度): 87.50120181861362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LoRA has gained widespread acceptance in the fine-tuning of large pre-trained models to cater to a diverse array of downstream tasks, showcasing notable effectiveness and efficiency, thereby solidifying its position as one of the most prevalent fine-tuning techniques. Due to the modular nature of LoRA's plug-and-play plugins, researchers have delved into the amalgamation of multiple LoRAs to empower models to excel across various downstream tasks. Nonetheless, extant approaches for LoRA fusion grapple with inherent challenges. Direct arithmetic merging may result in the loss of the original pre-trained model's generative capabilities or the distinct identity of LoRAs, thereby yielding suboptimal outcomes. On the other hand, Reference tuning-based fusion exhibits limitations concerning the requisite flexibility for the effective combination of multiple LoRAs. In response to these challenges, this paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection. The MoLE approach not only achieves superior LoRA fusion performance in comparison to direct arithmetic merging but also retains the crucial flexibility for combining LoRAs effectively. Extensive experimental evaluations conducted in both the Natural Language Processing (NLP) and Vision & Language (V&L) domains substantiate the efficacy of MoLE.
- Abstract(参考訳): LoRAは、様々な下流タスクに対応するために、大規模な訓練済みモデルの微調整に広く受け入れられ、顕著な効果と効率性を示し、最も一般的な微調整技法の1つとしての地位を固めている。
LoRAのプラグイン・アンド・プレイプラグインのモジュラー性のため、研究者は複数のLoRAのアマルガメーションを掘り下げて、さまざまな下流タスクにモデルを拡張した。
それでも、LoRA融合のための既存のアプローチは、固有の課題と相反する。
直接算術マージは、元の事前訓練されたモデルの生成能力を失ったり、LoRAの別個の同一性を失ったりし、結果として準最適結果をもたらす。
一方、参照チューニングに基づく融合では、複数のLoRAを効果的に組み合わせるために必要な柔軟性に関する制限が示される。
これらの課題に対応するために,本論文では,階層的制御と未分散分岐選択を利用する LoRA Experts (Mixture of LoRA) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を達成するだけでなく、LoRAを効果的に組み合わせるための重要な柔軟性を保っている。
自然言語処理(NLP)とビジョン&ランゲージ(V&L)の両領域で実施された広範囲な実験的評価は,MoLEの有効性を裏付けるものである。
関連論文リスト
- MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - Merging LoRAs like Playing LEGO: Pushing the Modularity of LoRA to Extremes Through Rank-Wise Clustering [35.54018186415654]
Low-Rank Adaptation (LoRA) は、様々なドメインに最適化された大規模言語モデル(LLM)の一般的なテクニックとして登場した。
LoRA合成の既存の方法は、主に追加の訓練を必要とするタスク固有の適応に焦点を当てている。
本稿では,LoRAにおける各ランクに対応するパラメータが独立単位として機能する最小意味単位(MSU)の概念を紹介する。
我々は、異なるLoRAから$k$のクラスタにMSUをグループ化することで、ランクワイズパラメータクラスタリングを行うLoRA-LEGOフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T15:08:41Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整する効率的な方法を提供する。
本稿では,入力プロンプトに基づいて複数のLoRAを適応的に検索・構成するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-24T05:24:41Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
ローランク適応(ローランク適応、LoRA)は、事前訓練された言語モデルにおける最も一般的なタスク固有パラメータ効率細調整(PEFT)手法の1つである。
本稿では,これらの課題を緩和するために,LoRAの効率的かつ効果的なフェデレートフリーズA LoRA(FFA-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-03-18T23:20:08Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [54.65520214291653]
本稿では,Low-Rank Adaption (LoRA) とマルチモーダル命令チューニングを統合した新しい手法を提案する。
各入力インスタンスのユニークな要求に合わせた低ランク適応行列を動的に構築することで、LoRAを革新する。
様々なマルチモーダル評価データセットの実験結果から、MixLoRAは従来のLoRAを同等以上のランクで上回るだけでなく、性能も向上していることが示された。
論文 参考訳(メタデータ) (2024-02-24T20:15:31Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRAは、ダウンストリームタスクやドメイン毎に大きな言語モデル(LLM)をカスタマイズするために軽量モジュールを使用している。
動的重みを利用して異なるLoRAの影響を調整するLoRA-Flowを提案する。
6つの生成タスクに対する実験により、我々の手法はタスクレベルの融合重みでベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2024-02-18T04:41:25Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するための効率的なソリューションを提供する。
LoraRetrieverは、入力プロンプトに従って複数のLoRAを適応的に検索して構成する検索テーマ構成フレームワークである。
実験結果から、LoraRetrieverは一貫してベースラインを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-02-15T15:02:46Z) - LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts
in Instruction Finetuning MLLMs [29.96139552754377]
MLLMの命令微調整に有効なMixture of Experts(MoE)設計法を提案する。
大規模な実験により、LLaVA-MoLEは複数の異なる命令データセットを混合する際のデータ競合問題を効果的に軽減することが証明された。
LLaVA-MoLEは2倍のサンプルで訓練された平らなLoRAベースラインよりも優れている。
論文 参考訳(メタデータ) (2024-01-29T13:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。