Utilizing Deep Learning to Optimize Software Development Processes
- URL: http://arxiv.org/abs/2404.13630v2
- Date: Fri, 3 May 2024 13:07:18 GMT
- Title: Utilizing Deep Learning to Optimize Software Development Processes
- Authors: Keqin Li, Armando Zhu, Peng Zhao, Jintong Song, Jiabei Liu,
- Abstract summary: This study explores the application of deep learning technologies in software development processes.
Experiments show significant improvements in the experimental group, validating the effectiveness of deep learning technologies.
- Score: 12.170648326334536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the application of deep learning technologies in software development processes, particularly in automating code reviews, error prediction, and test generation to enhance code quality and development efficiency. Through a series of empirical studies, experimental groups using deep learning tools and control groups using traditional methods were compared in terms of code error rates and project completion times. The results demonstrated significant improvements in the experimental group, validating the effectiveness of deep learning technologies. The research also discusses potential optimization points, methodologies, and technical challenges of deep learning in software development, as well as how to integrate these technologies into existing software development workflows.
Related papers
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
This study investigates the impact of integrating DevSecOps and Generative Artificial Intelligence on software delivery performance within technology firms.
The findings reveal significant enhancements in R&D efficiency, improved source code management, and heightened software quality and security.
arXiv Detail & Related papers (2024-11-04T16:44:01Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
This paper investigates the integration of generative AI tools within software development.
Through a pilot case study, we gathered valuable experiences on the integration of generative AI tools into their daily work routines.
Our findings reveal a generally positive perception of these tools in individual productivity while also highlighting the need to address identified limitations.
arXiv Detail & Related papers (2024-06-01T21:51:33Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - Leveraging AI for Enhanced Software Effort Estimation: A Comprehensive
Study and Framework Proposal [2.8643479919807433]
The study aims to improve accuracy and reliability by overcoming the limitations of traditional methods.
The proposed AI-based framework holds the potential to enhance project planning and resource allocation.
arXiv Detail & Related papers (2024-02-08T08:25:41Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - Devops And Agile Methods Integrated Software Configuration Management
Experience [0.0]
The aim of this study is to examine the differences and benefits that innovative methods bring to the software configuration management field when compared to traditional methods.
Improvements are seen in the build and deployment time, automated report generation, more accurate and fault-free version management.
arXiv Detail & Related papers (2023-06-24T13:40:27Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
PerfDetectiveAI, a conceptual framework for performance gap analysis and suggestion in software applications is introduced in this research.
Modern machine learning (ML) and artificial intelligence (AI) techniques are used in PerfDetectiveAI to monitor performance measurements and identify areas of underperformance in software applications.
arXiv Detail & Related papers (2023-06-11T02:53:04Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.