Physics-informed Discretization-independent Deep Compositional Operator Network
- URL: http://arxiv.org/abs/2404.13646v2
- Date: Mon, 29 Jul 2024 18:38:43 GMT
- Title: Physics-informed Discretization-independent Deep Compositional Operator Network
- Authors: Weiheng Zhong, Hadi Meidani,
- Abstract summary: We introduce a novel physics-informed model architecture which can generalize to various discrete representations of PDE parameters and irregular domain shapes.
Inspired by deep operator neural networks, our model involves a discretization-independent learning of parameter embedding repeatedly.
Numerical results demonstrate the accuracy and efficiency of the proposed method.
- Score: 1.2430809884830318
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Solving parametric Partial Differential Equations (PDEs) for a broad range of parameters is a critical challenge in scientific computing. To this end, neural operators, which \textcolor{black}{predicts the PDE solution with variable PDE parameter inputs}, have been successfully used. However, the training of neural operators typically demands large training datasets, the acquisition of which can be prohibitively expensive. To address this challenge, physics-informed training can offer a cost-effective strategy. However, current physics-informed neural operators face limitations, either in handling irregular domain shapes or in in generalizing to various discrete representations of PDE parameters. In this research, we introduce a novel physics-informed model architecture which can generalize to various discrete representations of PDE parameters and irregular domain shapes. Particularly, inspired by deep operator neural networks, our model involves a discretization-independent learning of parameter embedding repeatedly, and this parameter embedding is integrated with the response embeddings through multiple compositional layers, for more expressivity. Numerical results demonstrate the accuracy and efficiency of the proposed method.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Parameterized Physics-informed Neural Networks for Parameterized PDEs [24.926311700375948]
In this paper, we propose a novel extension, parameterized physics-informed neural networks (PINNs)
PINNs enable modeling the solutions of parameterized partial differential equations (PDEs) via explicitly encoding a latent representation of PDE parameters.
We demonstrate that P$2$INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs.
arXiv Detail & Related papers (2024-08-18T11:58:22Z) - Physics-Informed Geometry-Aware Neural Operator [1.2430809884830318]
Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry.
Recent neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions.
We introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries.
arXiv Detail & Related papers (2024-08-02T23:11:42Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
Partial differential equations (PDEs) underlie our understanding and prediction of natural phenomena.
We propose a novel approach for solving parametric PDEs using a Finite Element Operator Network (FEONet)
arXiv Detail & Related papers (2023-08-09T03:56:07Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model.
We propose to leverage physics prior knowledge by baking'' the discretized governing equations into the neural network architecture.
This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction.
arXiv Detail & Related papers (2022-05-09T01:27:58Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.