LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
- URL: http://arxiv.org/abs/2404.13659v1
- Date: Sun, 21 Apr 2024 13:29:42 GMT
- Title: LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
- Authors: Tong Wang, Guanzhou Chen, Xiaodong Zhang, Chenxi Liu, Xiaoliang Tan, Jiaqi Wang, Chanjuan He, Wenlin Zhou,
- Abstract summary: Current methods often process only two types of data, missing out on the rich information that additional modalities can provide.
We propose a novel textbfLightweight textbfMultimodal data textbfFusion textbfNetwork (LMFNet)
LMFNet accommodates various data types simultaneously, including RGB, NirRG, and DSM, through a weight-sharing, multi-branch vision transformer.
- Score: 25.016421338677816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the rapid evolution of semantic segmentation for land cover classification in high-resolution remote sensing imagery, integrating multiple data modalities such as Digital Surface Model (DSM), RGB, and Near-infrared (NIR) remains a challenge. Current methods often process only two types of data, missing out on the rich information that additional modalities can provide. Addressing this gap, we propose a novel \textbf{L}ightweight \textbf{M}ultimodal data \textbf{F}usion \textbf{Net}work (LMFNet) to accomplish the tasks of fusion and semantic segmentation of multimodal remote sensing images. LMFNet uniquely accommodates various data types simultaneously, including RGB, NirRG, and DSM, through a weight-sharing, multi-branch vision transformer that minimizes parameter count while ensuring robust feature extraction. Our proposed multimodal fusion module integrates a \textit{Multimodal Feature Fusion Reconstruction Layer} and \textit{Multimodal Feature Self-Attention Fusion Layer}, which can reconstruct and fuse multimodal features. Extensive testing on public datasets such as US3D, ISPRS Potsdam, and ISPRS Vaihingen demonstrates the effectiveness of LMFNet. Specifically, it achieves a mean Intersection over Union ($mIoU$) of 85.09\% on the US3D dataset, marking a significant improvement over existing methods. Compared to unimodal approaches, LMFNet shows a 10\% enhancement in $mIoU$ with only a 0.5M increase in parameter count. Furthermore, against bimodal methods, our approach with trilateral inputs enhances $mIoU$ by 0.46 percentage points.
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
Recent endeavors regard RGB modality as the center and the others as the auxiliary, yielding an asymmetric architecture with two branches.
We propose a novel method, named MAGIC, that can be flexibly paired with various backbones, ranging from compact to high-performance models.
Our method achieves state-of-the-art performance while reducing the model parameters by 60%.
arXiv Detail & Related papers (2024-07-16T03:19:59Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - FedFusion: Manifold Driven Federated Learning for Multi-satellite and
Multi-modality Fusion [30.909597853659506]
This paper proposes a manifold-driven multi-modality fusion framework, FedFusion, which randomly samples local data on each client to jointly estimate the prominent manifold structure of shallow features of each client.
Considering the physical space limitations of the satellite constellation, we developed a multimodal federated learning module designed specifically for manifold data in a deep latent space.
The proposed framework surpasses existing methods in terms of performance on three multimodal datasets, achieving a classification average accuracy of 94.35$%$ while compressing communication costs by a factor of 4.
arXiv Detail & Related papers (2023-11-16T03:29:19Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Multi-modal land cover mapping of remote sensing images using pyramid
attention and gated fusion networks [20.66034058363032]
We propose a new multi-modality network for land cover mapping of multi-modal remote sensing data based on a novel pyramid attention fusion (PAF) module and a gated fusion unit (GFU)
PAF module is designed to efficiently obtain rich fine-grained contextual representations from each modality with a built-in cross-level and cross-view attention fusion mechanism.
GFU module utilizes a novel gating mechanism for early merging of features, thereby diminishing hidden redundancies and noise.
arXiv Detail & Related papers (2021-11-06T10:01:01Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.