FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization
- URL: http://arxiv.org/abs/2404.13671v2
- Date: Fri, 26 Jul 2024 02:42:21 GMT
- Title: FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization
- Authors: Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Hao Li, Ming Tang, Jinqiao Wang,
- Abstract summary: We propose a novel zero-shot anomaly detection (ZSAD) method called FiLo.
FiLo comprises two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High- quality localization (HQ-Loc)
Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization.
- Score: 31.854923603517264
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories. Existing approaches typically rely on the robust generalization capabilities of multimodal pretrained models, computing similarities between manually crafted textual features representing "normal" or "abnormal" semantics and image features to detect anomalies and localize anomalous patches. However, the generic descriptions of "abnormal" often fail to precisely match diverse types of anomalies across different object categories. Additionally, computing feature similarities for single patches struggles to pinpoint specific locations of anomalies with various sizes and scales. To address these issues, we propose a novel ZSAD method called FiLo, comprising two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High-Quality Localization (HQ-Loc). FG-Des introduces fine-grained anomaly descriptions for each category using Large Language Models (LLMs) and employs adaptively learned textual templates to enhance the accuracy and interpretability of anomaly detection. HQ-Loc, utilizing Grounding DINO for preliminary localization, position-enhanced text prompts, and Multi-scale Multi-shape Cross-modal Interaction (MMCI) module, facilitates more accurate localization of anomalies of different sizes and shapes. Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization, achieving state-of-the-art performance with an image-level AUC of 83.9% and a pixel-level AUC of 95.9% on the VisA dataset. Code is available at https://github.com/CASIA-IVA-Lab/FiLo.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection [30.679012320439625]
AnomalyCLIP learns object-agnostic text prompts to capture generic normality and abnormality in an image.
It achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics.
arXiv Detail & Related papers (2023-10-29T10:03:49Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection [74.9262846410559]
textbfHard Nominal textbfExample-aware textbfTemplate textbfMutual textbfMatching (HETMM)
textitHETMM aims to construct a robust prototype-based decision boundary, which can precisely distinguish between hard-nominal examples and anomalies.
arXiv Detail & Related papers (2023-03-28T17:54:56Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
Anomalies in images occur in various scales from a small hole on a carpet to a large stain.
One of the widely used anomaly detection methods, sparse coding, has an issue in dealing with anomalies that are out of the patch size employed to sparsely represent images.
We propose to incorporate multi-scale features to sparse coding and improve the performance of anomaly detection.
arXiv Detail & Related papers (2021-04-09T10:20:34Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.