Fair Concurrent Training of Multiple Models in Federated Learning
- URL: http://arxiv.org/abs/2404.13841v1
- Date: Mon, 22 Apr 2024 02:41:10 GMT
- Title: Fair Concurrent Training of Multiple Models in Federated Learning
- Authors: Marie Siew, Haoran Zhang, Jong-Ik Park, Yuezhou Liu, Yichen Ruan, Lili Su, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong,
- Abstract summary: Federated learning (FL) enables collaborative learning across multiple clients.
Recent proliferation of FL applications may increasingly require multiple FL tasks to be trained simultaneously.
Current MMFL algorithms use naive average-based client-task allocation schemes.
We propose a difficulty-aware algorithm that dynamically allocates clients to tasks in each training round.
- Score: 32.74516106486226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) enables collaborative learning across multiple clients. In most FL work, all clients train a single learning task. However, the recent proliferation of FL applications may increasingly require multiple FL tasks to be trained simultaneously, sharing clients' computing and communication resources, which we call Multiple-Model Federated Learning (MMFL). Current MMFL algorithms use naive average-based client-task allocation schemes that can lead to unfair performance when FL tasks have heterogeneous difficulty levels, e.g., tasks with larger models may need more rounds and data to train. Just as naively allocating resources to generic computing jobs with heterogeneous resource needs can lead to unfair outcomes, naive allocation of clients to FL tasks can lead to unfairness, with some tasks having excessively long training times, or lower converged accuracies. Furthermore, in the FL setting, since clients are typically not paid for their training effort, we face a further challenge that some clients may not even be willing to train some tasks, e.g., due to high computational costs, which may exacerbate unfairness in training outcomes across tasks. We address both challenges by firstly designing FedFairMMFL, a difficulty-aware algorithm that dynamically allocates clients to tasks in each training round. We provide guarantees on airness and FedFairMMFL's convergence rate. We then propose a novel auction design that incentivizes clients to train multiple tasks, so as to fairly distribute clients' training efforts across the tasks. We show how our fairness-based learning and incentive mechanisms impact training convergence and finally evaluate our algorithm with multiple sets of learning tasks on real world datasets.
Related papers
- Resource-Efficient Federated Multimodal Learning via Layer-wise and Progressive Training [15.462969044840868]
We introduce LW-FedMML, a layer-wise federated multimodal learning approach which decomposes the training process into multiple stages.
We conduct extensive experiments across various FL and multimodal learning settings to validate the effectiveness of our proposed method.
Specifically, LW-FedMML reduces memory usage by up to $2.7times$, computational operations (FLOPs) by $2.4times$, and total communication cost by $2.3times$.
arXiv Detail & Related papers (2024-07-22T07:06:17Z) - Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training.
Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods.
arXiv Detail & Related papers (2024-06-21T13:19:29Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges.
We introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective.
arXiv Detail & Related papers (2024-02-07T17:46:37Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - An Incentive Mechanism for Federated Learning Based on Multiple Resource
Exchange [5.385462087305977]
Federated Learning (FL) is a distributed machine learning paradigm that addresses privacy concerns in machine learning.
We introduce a multi-user collaborative computing framework, categorizing users into two roles: model owners (MOs) and data owner (DOs)
We show that the proposed collaborative computing framework can achieve an accuracy of more than 95% while minimizing the overall time to complete an FL task.
arXiv Detail & Related papers (2023-12-13T12:28:37Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
We find that curriculum learning largely alleviates non-IIDness.
The more disparate the data distributions across clients the more they benefit from learning.
We propose a novel client selection technique that benefits from the real-world disparity in the clients.
arXiv Detail & Related papers (2022-12-24T11:02:35Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - FedGradNorm: Personalized Federated Gradient-Normalized Multi-Task
Learning [50.756991828015316]
Multi-task learning (MTL) is a novel framework to learn several tasks simultaneously with a single shared network.
We propose FedGradNorm which uses a dynamic-weighting method to normalize norms in order to balance learning speeds among different tasks.
arXiv Detail & Related papers (2022-03-24T17:43:12Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.