論文の概要: DSDRNet: Disentangling Representation and Reconstruct Network for Domain Generalization
- arxiv url: http://arxiv.org/abs/2404.13848v1
- Date: Mon, 22 Apr 2024 03:15:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:26:21.403713
- Title: DSDRNet: Disentangling Representation and Reconstruct Network for Domain Generalization
- Title(参考訳): DSDRNet:ドメイン一般化のための拡張表現と再構成ネットワーク
- Authors: Juncheng Yang, Zuchao Li, Shuai Xie, Wei Yu, Shijun Li,
- Abstract要約: 本稿ではDSDRNetと呼ばれるデュアルストリーム分離再構成ネットワークを提案する。
これは、二重ストリーム融合を通じて、インスタンス間およびインスタンス内両方の特徴を統合する、アンタングルメント・リコンストラクションのアプローチである。
4つのベンチマークデータセットの実験により、DSDRNetはドメインの一般化能力において他の一般的なメソッドよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 26.19333812906363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain generalization faces challenges due to the distribution shift between training and testing sets, and the presence of unseen target domains. Common solutions include domain alignment, meta-learning, data augmentation, or ensemble learning, all of which rely on domain labels or domain adversarial techniques. In this paper, we propose a Dual-Stream Separation and Reconstruction Network, dubbed DSDRNet. It is a disentanglement-reconstruction approach that integrates features of both inter-instance and intra-instance through dual-stream fusion. The method introduces novel supervised signals by combining inter-instance semantic distance and intra-instance similarity. Incorporating Adaptive Instance Normalization (AdaIN) into a two-stage cyclic reconstruction process enhances self-disentangled reconstruction signals to facilitate model convergence. Extensive experiments on four benchmark datasets demonstrate that DSDRNet outperforms other popular methods in terms of domain generalization capabilities.
- Abstract(参考訳): ドメインの一般化は、トレーニングとテストセット間の分散シフトと、目に見えないターゲットドメインの存在によって、課題に直面します。
一般的なソリューションとしては、ドメインアライメント、メタラーニング、データ拡張、アンサンブルラーニングなどがある。
本稿では,DSDRNetと呼ばれるデュアルストリーム分離再構成ネットワークを提案する。
これは、二重ストリーム融合を通じて、インスタンス間およびインスタンス内両方の特徴を統合する、アンタングルメント・リコンストラクションのアプローチである。
インスタンス間意味距離とインスタンス内類似性を組み合わせることで、新しい教師付き信号を導入する。
適応インスタンス正規化(AdaIN)を2段階の周期的再構成プロセスに組み込むことで、自己異方性再構成信号が強化され、モデル収束が促進される。
4つのベンチマークデータセットに対する大規模な実験により、DSDRNetはドメインの一般化能力において他の一般的な手法よりも優れていることが示された。
関連論文リスト
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection [18.67853854539245]
教師なしドメイン適応オブジェクト検出(DAOD)は、ソースドメインでトレーニングされたモデルを未ラベルのターゲットドメインに適応させ、オブジェクト検出を行う。
本稿では,上記の課題を軽減するために,Domain Mixup (DomMix) モジュールを用いた対角対向ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-03T06:25:20Z) - Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
論文 参考訳(メタデータ) (2023-12-28T17:24:13Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
ドメインシフトを軽減するために、クロスドメインレグレッタを学ぶことが不可欠です。
本稿では、より効果的なドメイン間回帰モデルを求めるために、ABRNet(Adversarial Bi-Regressor Network)を提案する。
論文 参考訳(メタデータ) (2022-09-20T18:38:28Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium
Segmentation on Cross-Domain Data [8.645556125521246]
ドメイン間データに対する半教師付き学習の一般化は、モデルの堅牢性を改善するために重要である。
AHDCはBAI(Bidirectional Adversarial Inference Module)とHDC(Hierarchical Dual Consistency Learning Module)から構成されている。
今回提案したAHDCは, 異なる中心部からの3D遅延心筋MR(LGE-CMR)データセットと3DCTデータセットを用いて, 評価を行った。
論文 参考訳(メタデータ) (2021-09-17T02:15:10Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。