Multi-Level Sequence Denoising with Cross-Signal Contrastive Learning for Sequential Recommendation
- URL: http://arxiv.org/abs/2404.13878v2
- Date: Thu, 20 Jun 2024 03:37:07 GMT
- Title: Multi-Level Sequence Denoising with Cross-Signal Contrastive Learning for Sequential Recommendation
- Authors: Xiaofei Zhu, Liang Li, Weidong Liu, Xin Luo,
- Abstract summary: Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences.
We propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation.
- Score: 13.355017204983973
- License:
- Abstract: Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences. Recently, many research efforts have been devoted to attenuate the influence of noisy items in sequences by either assigning them with lower attention weights or discarding them directly. The major limitation of these methods is that the former would still prone to overfit noisy items while the latter may overlook informative items. To the end, in this paper, we propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation. To be specific, we first introduce a target-aware user interest extractor to simultaneously capture users' long and short term interest with the guidance of target items. Then, we develop a multi-level sequence denoising module to alleviate the impact of noisy items by employing both soft and hard signal denoising strategies. Additionally, we extend existing curriculum learning by simulating the learning pattern of human beings. It is worth noting that our proposed model can be seamlessly integrated with a majority of existing recommendation models and significantly boost their effectiveness. Experimental studies on five public datasets are conducted and the results demonstrate that the proposed MSDCCL is superior to the state-of-the-art baselines. The source code is publicly available at https://github.com/lalunex/MSDCCL/tree/main.
Related papers
- Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.
Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.
We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Enhancing Recommendation with Denoising Auxiliary Task [2.819369786209738]
Due to the arbitrariness of user behavior, the presence of noise poses a challenge to predicting their next actions in recommender systems.
We propose a novel self-supervised Auxiliary Task Joint Training (ATJT) method aimed at more accurately reweighting noisy sequences in recommender systems.
arXiv Detail & Related papers (2024-09-25T22:26:29Z) - When SparseMoE Meets Noisy Interactions: An Ensemble View on Denoising Recommendation [3.050721435894337]
We propose a novel Adaptive Ensemble Learning (AEL) for denoising recommendation.
AEL employs a sparse gating network as a brain, selecting suitable experts to synthesize appropriate denoising capacities.
To address the ensemble learning shortcoming of model complexity, we also proposed a novel method that stacks components to create sub-recommenders.
arXiv Detail & Related papers (2024-09-19T12:55:34Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Improving Contrastive Learning with Model Augmentation [123.05700988581806]
The sequential recommendation aims at predicting the next items in user behaviors, which can be solved by characterizing item relationships in sequences.
Due to the data sparsity and noise issues in sequences, a new self-supervised learning (SSL) paradigm is proposed to improve the performance.
arXiv Detail & Related papers (2022-03-25T06:12:58Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.