論文の概要: Audio Anti-Spoofing Detection: A Survey
- arxiv url: http://arxiv.org/abs/2404.13914v1
- Date: Mon, 22 Apr 2024 06:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:05:12.933966
- Title: Audio Anti-Spoofing Detection: A Survey
- Title(参考訳): 音声によるアンチスプーフィング検出:サーベイ
- Authors: Menglu Li, Yasaman Ahmadiadli, Xiao-Ping Zhang,
- Abstract要約: ディープラーニングは、Deepfakeとして知られるマルチメディアフェイクコンテンツを操作または作成できる洗練されたアルゴリズムを生み出した。
防汚対策の開発を促進するため, 防汚対策の音響的課題が編成されている。
本稿では,アルゴリズムアーキテクチャ,最適化手法,アプリケーション一般化性,評価指標,パフォーマンス比較,利用可能なデータセット,オープンソース可用性など,検出パイプライン内のすべてのコンポーネントについて,包括的なレビューを行う。
- 参考スコア(独自算出の注目度): 7.3348524333159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability of smart devices leads to an exponential increase in multimedia content. However, the rapid advancements in deep learning have given rise to sophisticated algorithms capable of manipulating or creating multimedia fake content, known as Deepfake. Audio Deepfakes pose a significant threat by producing highly realistic voices, thus facilitating the spread of misinformation. To address this issue, numerous audio anti-spoofing detection challenges have been organized to foster the development of anti-spoofing countermeasures. This survey paper presents a comprehensive review of every component within the detection pipeline, including algorithm architectures, optimization techniques, application generalizability, evaluation metrics, performance comparisons, available datasets, and open-source availability. For each aspect, we conduct a systematic evaluation of the recent advancements, along with discussions on existing challenges. Additionally, we also explore emerging research topics on audio anti-spoofing, including partial spoofing detection, cross-dataset evaluation, and adversarial attack defence, while proposing some promising research directions for future work. This survey paper not only identifies the current state-of-the-art to establish strong baselines for future experiments but also guides future researchers on a clear path for understanding and enhancing the audio anti-spoofing detection mechanisms.
- Abstract(参考訳): スマートデバイスが利用可能になると、マルチメディアコンテンツが指数関数的に増加する。
しかし、ディープラーニングの急速な進歩により、Deepfakeとして知られるマルチメディアフェイクコンテンツの操作や作成が可能な高度なアルゴリズムが生まれている。
オーディオディープフェイクは、非常に現実的な声を生み出すことで重大な脅威となり、誤報の拡散を促進する。
この問題に対処するため, 防汚対策の開発を促進するため, 多数の防汚対策が計画されている。
本稿では,アルゴリズムアーキテクチャ,最適化手法,アプリケーション一般化性,評価指標,パフォーマンス比較,利用可能なデータセット,オープンソース可用性など,検出パイプライン内のすべてのコンポーネントについて,包括的なレビューを行う。
それぞれの側面において,近年の進歩を体系的に評価し,既存の課題について議論する。
さらに,部分的スプーフィング検出,クロスデータセット評価,対人攻撃防御など,音声のアンチ・スプーフィングに関する新たな研究課題についても検討するとともに,今後の研究に向けて有望な研究方向を提案する。
本研究は,将来的な実験のための強力なベースラインを確立するための現状を明らかにするだけでなく,音声のアンチ・スポーフィング検出機構の理解と向上のための明確な経路を将来の研究者に案内するものである。
関連論文リスト
- Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors [24.954755569786396]
AIテキスト検出は、人間と機械が生成したコンテンツを区別するために現れた。
近年の研究では、これらの検出システムは、しばしば頑丈さを欠き、摂動テキストを効果的に区別する難しさを欠いていることが示されている。
我々の研究は、非公式な文章と専門的な文章の両方で現実世界のシナリオをシミュレートし、現在の検出器のアウト・オブ・ボックスのパフォーマンスを探求する。
論文 参考訳(メタデータ) (2024-06-13T08:37:01Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
AI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯したりする危険性が高まっている。
この研究は、従来の単一モダリティ手法から、音声・視覚・テキスト・視覚シナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
私たちの知る限りでは、この種の調査はこれが初めてである。
論文 参考訳(メタデータ) (2024-06-11T05:48:04Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
一般化は、現在のオーディオディープフェイク検出器の主な問題である。
本稿では,オーディオディープフェイク検出のための大規模事前学習モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-05-03T15:27:11Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - All-for-One and One-For-All: Deep learning-based feature fusion for
Synthetic Speech Detection [18.429817510387473]
近年のディープラーニングとコンピュータビジョンの進歩により、マルチメディアコンテンツの合成と偽造がこれまで以上に容易にできるようになった。
本稿では,合成音声検出タスクについて文献で提案する3つの特徴セットについて考察し,それらと融合するモデルを提案する。
このシステムは異なるシナリオとデータセットでテストされ、反法医学的攻撃に対する堅牢性とその一般化能力を証明する。
論文 参考訳(メタデータ) (2023-07-28T13:50:25Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z) - Deepfake audio detection by speaker verification [79.99653758293277]
本研究では,話者の生体特性のみを活用する新しい検出手法を提案する。
提案手法は,既成話者検証ツールに基づいて実装することができる。
そこで我々は,3つの一般的なテストセット上で,優れた性能,高い一般化能力,高ロバスト性を有する音声障害に対する高ロバスト性を検証した。
論文 参考訳(メタデータ) (2022-09-28T13:46:29Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - A Review of Deep Learning-based Approaches for Deepfake Content
Detection [8.666909290293946]
ディープラーニング生成モデルの最近の進歩は、非常に説得力のある偽造画像やビデオを作成することができるという懸念を提起している。
本稿では,ディープラーニングを用いたコンテンツ検出に関する最近の研究を包括的にレビューする。
論文 参考訳(メタデータ) (2022-02-12T16:22:46Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。