論文の概要: Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI
- arxiv url: http://arxiv.org/abs/2404.13929v2
- Date: Fri, 10 May 2024 06:35:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:55:41.438501
- Title: Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI
- Title(参考訳): DCE-MRIにおける良性病変と悪性病変の分類のための運動曲線の探索
- Authors: Zixian Li, Yuming Zhong, Yi Wang,
- Abstract要約: 胸部良性病変と悪性病変の分類精度を高めるため, 運動曲線および放射線学的特徴の動的特性を活用することを提案する。
提案手法は,200個のDCE-MRIスキャンと298個の乳腺腫瘍を含む社内データセットを用いて評価した。
- 参考スコア(独自算出の注目度): 3.3382992386198675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer is the most common malignant tumor among women and the second cause of cancer-related death. Early diagnosis in clinical practice is crucial for timely treatment and prognosis. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has revealed great usability in the preoperative diagnosis and assessing therapy effects thanks to its capability to reflect the morphology and dynamic characteristics of breast lesions. However, most existing computer-assisted diagnosis algorithms only consider conventional radiomic features when classifying benign and malignant lesions in DCE-MRI. In this study, we propose to fully leverage the dynamic characteristics from the kinetic curves as well as the radiomic features to boost the classification accuracy of benign and malignant breast lesions. The proposed method is a fully automated solution by directly analyzing the 3D features from the DCE-MRI. The proposed method is evaluated on an in-house dataset including 200 DCE-MRI scans with 298 breast tumors (172 benign and 126 malignant tumors), achieving favorable classification accuracy with an area under curve (AUC) of 0.94. By simultaneously considering the dynamic and radiomic features, it is beneficial to effectively distinguish between benign and malignant breast lesions. The algorithm is publicly available at https://github.com/ryandok/JPA.
- Abstract(参考訳): 乳癌は女性に最も多い悪性腫瘍であり、癌関連死亡の2番目の原因である。
早期臨床診断はタイムリーな治療と予後に重要である。
ダイナミックコントラスト造影MRI(Dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)は, 乳腺病変の形態とダイナミックな特徴を反映し, 術前診断および治療効果の評価に有用であることを明らかにした。
しかし,DCE-MRIで良性病変と悪性病変を分類する際には,従来の放射線学的特徴のみを考慮すべきである。
本研究では, 胸部良性病変と悪性病変の分類精度を高めるために, 運動曲線と放射能特性の動的特性をフル活用することを提案する。
提案手法は,DCE-MRIの3次元特徴を直接解析し,完全自動解法である。
本手法は,200個のDCE-MRIスキャンと298個の乳腺腫瘍(172個の良性腫瘍と126個の悪性腫瘍を含む社内データセットを用いて評価し,曲線下領域(AUC)が0。
動的および放射線学的特徴を同時に考慮し,良性病変と悪性乳癌の鑑別を効果的に行うことが有用である。
このアルゴリズムはhttps://github.com/ryandok/JPAで公開されている。
関連論文リスト
- Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
本研究では,ダイナミックコントラスト強調画像(DCE)とADCマップを用いた乳癌患者のpCR予測モデルを提案する。
本手法は, 腫瘍関連領域からの特徴抽出を誘導するために放射線を利用した自己注意機構を備えたエンコーダを用いて, DCE MRI と ADC から特徴抽出を行う。
論文 参考訳(メタデータ) (2024-06-05T04:49:55Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADSは乳房超音波(BUS)画像における腫瘍検出のための新しい深層学習手法である。
放射線科医が腫瘍の悪性度を予測するための意思決定プロセスを理解するための3つのレベルの説明を提供する。
論文 参考訳(メタデータ) (2023-08-27T22:07:42Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Brain Tumor MRI Classification using a Novel Deep Residual and Regional
CNN [0.0]
Res-BRNet Convolutional Neural Network (CNN) は脳腫瘍(磁気共鳴イメージング)MRIの診断に有用である。
開発されたRes-BRNetの効率は、KaggleとFigshareから収集された標準データセットに基づいて評価される。
実験により、Res-BRNetは標準CNNモデルよりも優れ、優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-29T20:14:13Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。