論文の概要: Dynamic Proxy Domain Generalizes the Crowd Localization by Better Binary Segmentation
- arxiv url: http://arxiv.org/abs/2404.13992v1
- Date: Mon, 22 Apr 2024 08:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:45:41.402209
- Title: Dynamic Proxy Domain Generalizes the Crowd Localization by Better Binary Segmentation
- Title(参考訳): 動的プロキシドメインは、より良いバイナリセグメンテーションによって群衆の局在を一般化する
- Authors: Junyu Gao, Da Zhang, Xuelong Li,
- Abstract要約: 群衆のローカライゼーションは、イメージ内の各インスタンスの正確な位置を予測することを目的としている。
現在の高度な手法では、混雑予測に対処する画素単位のバイナリ分類が提案されている。
ドメインシフト下で学習者を一般化するための動的プロキシドメイン(DPD)手法を提案する。
- 参考スコア(独自算出の注目度): 65.13362950067744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crowd localization targets on predicting each instance precise location within an image. Current advanced methods propose the pixel-wise binary classification to tackle the congested prediction, in which the pixel-level thresholds binarize the prediction confidence of being the pedestrian head. Since the crowd scenes suffer from extremely varying contents, counts and scales, the confidence-threshold learner is fragile and under-generalized encountering domain knowledge shift. Moreover, at the most time, the target domain is agnostic in training. Hence, it is imperative to exploit how to enhance the generalization of confidence-threshold locator to the latent target domain. In this paper, we propose a Dynamic Proxy Domain (DPD) method to generalize the learner under domain shift. Concretely, based on the theoretical analysis to the generalization error risk upper bound on the latent target domain to a binary classifier, we propose to introduce a generated proxy domain to facilitate generalization. Then, based on the theory, we design a DPD algorithm which is composed by a training paradigm and proxy domain generator to enhance the domain generalization of the confidence-threshold learner. Besides, we conduct our method on five kinds of domain shift scenarios, demonstrating the effectiveness on generalizing the crowd localization. Our code will be available at https://github.com/zhangda1018/DPD.
- Abstract(参考訳): 群衆のローカライゼーションは、イメージ内の各インスタンスの正確な位置を予測することを目的としている。
現在の先進的手法では, 歩行者頭部の予測信頼度を2項化して, 混雑予測に対処する画素ワイド二分法が提案されている。
観客シーンは内容、数、規模が極めて多様であるため、自信を持てる学習者は脆弱で、ドメイン知識の変化に遭遇しにくい。
さらに、ほとんどの場合、ターゲットドメインはトレーニングにおいて非依存である。
したがって、信頼閾値ロケータを潜在対象領域に一般化する方法を活用することが不可欠である。
本稿では,動的プロキシ・ドメイン(DPD)を用いて学習者のドメインシフトを一般化する手法を提案する。
具体的には,2値分類器に対する潜在対象領域上の一般化誤差上限に対する理論的解析に基づいて,一般化を容易にするために生成したプロキシドメインを提案する。
そして,この理論に基づいて,訓練パラダイムとプロキシドメインジェネレータによって構成されるDPDアルゴリズムを設計し,信頼性閾値学習者の領域一般化を強化する。
さらに,本手法は5種類のドメインシフトシナリオで実施し,クラウドローカライゼーションの一般化の有効性を実証する。
私たちのコードはhttps://github.com/zhangda1018/DPD.comで公開されます。
関連論文リスト
- Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
そこで本研究では,クラスレベルのアライメントアライメントを有するバイディミネータドメイン対向ニューラルネットワークを提案する。
BACGは、領域分布の整合性を改善するために勾配信号と二階確率推定を利用する。
さらに、対照的な学習にインスパイアされ、トレーニングプロセスを大幅に短縮できるメモリバンクベースの変種であるFast-BACGを開発した。
論文 参考訳(メタデータ) (2023-10-21T09:53:17Z) - Localized Adversarial Domain Generalization [83.4195658745378]
対数領域の一般化は、領域の一般化に対する一般的なアプローチである。
空間コンパクト性維持(LADG)を用いた局所対向領域の一般化を提案する。
我々はWilds DGベンチマークで包括的な実験を行い、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2022-05-09T08:30:31Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
多くの設定において、プライバシに関する懸念は、トレーニングデータサンプルのドメインラベルを取得することを禁止している。
本稿では,この問題に対するドメイン適応的アプローチを提案する。
提案手法は,ドメインラベルを使わずに,様々な領域一般化ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-12-09T08:57:01Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
本稿では,フォワード・バック・サイクリック(FBC)トレーニングによる物体検出のための教師なし領域適応手法を提案する。
近年, 対角訓練に基づく領域適応法は, 限界特徴分布アライメントによる領域差最小化に有効であることが示された。
本稿では,後方ホッピングによるソースからターゲットへの適応と,前方通過によるターゲットからソースへの適応を反復的に計算するフォワード・バック・サイクル適応を提案する。
論文 参考訳(メタデータ) (2020-02-03T06:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。