A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities
- URL: http://arxiv.org/abs/2404.14019v1
- Date: Mon, 22 Apr 2024 09:33:44 GMT
- Title: A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities
- Authors: Ming Kang, Fung Fung Ting, Raphaƫl C. -W. Phan, Zongyuan Ge, Chee-Ming Ting,
- Abstract summary: We propose a Multimodal feature distillation with Convolutional Neural Network (CNN)-Transformer hybrid network (MCTSeg) for accurate brain tumor segmentation with missing modalities.
Our ablation study demonstrates the importance of the proposed modules with CNN-Transformer networks and the convolutional blocks in Transformer for improving the performance of brain tumor segmentation with missing modalities.
- Score: 15.841483814265592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing brain tumor segmentation methods usually utilize multiple Magnetic Resonance Imaging (MRI) modalities in brain tumor images for segmentation, which can achieve better segmentation performance. However, in clinical applications, some modalities are missing due to resource constraints, leading to severe degradation in the performance of methods applying complete modality segmentation. In this paper, we propose a Multimodal feature distillation with Convolutional Neural Network (CNN)-Transformer hybrid network (MCTSeg) for accurate brain tumor segmentation with missing modalities. We first design a Multimodal Feature Distillation (MFD) module to distill feature-level multimodal knowledge into different unimodality to extract complete modality information. We further develop a Unimodal Feature Enhancement (UFE) module to model the relationship between global and local information semantically. Finally, we build a Cross-Modal Fusion (CMF) module to explicitly align the global correlations among different modalities even when some modalities are missing. Complementary features within and across different modalities are refined via the CNN-Transformer hybrid architectures in both the UFE and CMF modules, where local and global dependencies are both captured. Our ablation study demonstrates the importance of the proposed modules with CNN-Transformer networks and the convolutional blocks in Transformer for improving the performance of brain tumor segmentation with missing modalities. Extensive experiments on the BraTS2018 and BraTS2020 datasets show that the proposed MCTSeg framework outperforms the state-of-the-art methods in missing modalities cases. Our code is available at: https://github.com/mkang315/MCTSeg.
Related papers
- Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information [1.7359724605901228]
Brain Tumor distances (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors.
Due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task.
We propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy.
arXiv Detail & Related papers (2024-09-18T17:35:19Z) - M3AE: Multimodal Representation Learning for Brain Tumor Segmentation
with Missing Modalities [29.455215925816187]
Multimodal magnetic resonance imaging (MRI) provides complementary information for sub-region analysis of brain tumors.
It is common to have one or more modalities missing due to image corruption, artifacts, acquisition protocols, allergy to contrast agents, or simply cost.
We propose a novel two-stage framework for brain tumor segmentation with missing modalities.
arXiv Detail & Related papers (2023-03-09T14:54:30Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - NestedFormer: Nested Modality-Aware Transformer for Brain Tumor
Segmentation [29.157465321864265]
We propose a novel Nested Modality-Aware Transformer (NestedFormer) to explore the intra-modality and inter-modality relationships of multi-modal MRIs for brain tumor segmentation.
Built on the transformer-based multi-encoder and single-decoder structure, we perform nested multi-modal fusion for high-level representations of different modalities.
arXiv Detail & Related papers (2022-08-31T14:04:25Z) - mmFormer: Multimodal Medical Transformer for Incomplete Multimodal
Learning of Brain Tumor Segmentation [38.22852533584288]
We propose a novel Medical Transformer (mmFormer) for incomplete multimodal learning with three main components.
The proposed mmFormer outperforms the state-of-the-art methods for incomplete multimodal brain tumor segmentation on almost all subsets of incomplete modalities.
arXiv Detail & Related papers (2022-06-06T08:41:56Z) - TranSiam: Fusing Multimodal Visual Features Using Transformer for
Medical Image Segmentation [4.777011444412729]
We propose a segmentation method suitable for multimodal medical images that can capture global information.
TranSiam is a 2D dual path network that extracts features of different modalities.
On the BraTS 2019 and BraTS 2020 multimodal datasets, we have a significant improvement in accuracy over other popular methods.
arXiv Detail & Related papers (2022-04-26T09:39:10Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Deep Multimodal Fusion by Channel Exchanging [87.40768169300898]
This paper proposes a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities.
The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network.
arXiv Detail & Related papers (2020-11-10T09:53:20Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.