M3AE: Multimodal Representation Learning for Brain Tumor Segmentation
with Missing Modalities
- URL: http://arxiv.org/abs/2303.05302v1
- Date: Thu, 9 Mar 2023 14:54:30 GMT
- Title: M3AE: Multimodal Representation Learning for Brain Tumor Segmentation
with Missing Modalities
- Authors: Hong Liu, Dong Wei, Donghuan Lu, Jinghan Sun, Liansheng Wang, Yefeng
Zheng
- Abstract summary: Multimodal magnetic resonance imaging (MRI) provides complementary information for sub-region analysis of brain tumors.
It is common to have one or more modalities missing due to image corruption, artifacts, acquisition protocols, allergy to contrast agents, or simply cost.
We propose a novel two-stage framework for brain tumor segmentation with missing modalities.
- Score: 29.455215925816187
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal magnetic resonance imaging (MRI) provides complementary
information for sub-region analysis of brain tumors. Plenty of methods have
been proposed for automatic brain tumor segmentation using four common MRI
modalities and achieved remarkable performance. In practice, however, it is
common to have one or more modalities missing due to image corruption,
artifacts, acquisition protocols, allergy to contrast agents, or simply cost.
In this work, we propose a novel two-stage framework for brain tumor
segmentation with missing modalities. In the first stage, a multimodal masked
autoencoder (M3AE) is proposed, where both random modalities (i.e., modality
dropout) and random patches of the remaining modalities are masked for a
reconstruction task, for self-supervised learning of robust multimodal
representations against missing modalities. To this end, we name our framework
M3AE. Meanwhile, we employ model inversion to optimize a representative
full-modal image at marginal extra cost, which will be used to substitute for
the missing modalities and boost performance during inference. Then in the
second stage, a memory-efficient self distillation is proposed to distill
knowledge between heterogenous missing-modal situations while fine-tuning the
model for supervised segmentation. Our M3AE belongs to the 'catch-all' genre
where a single model can be applied to all possible subsets of modalities, thus
is economic for both training and deployment. Extensive experiments on BraTS
2018 and 2020 datasets demonstrate its superior performance to existing
state-of-the-art methods with missing modalities, as well as the efficacy of
its components. Our code is available at: https://github.com/ccarliu/m3ae.
Related papers
- MedMAP: Promoting Incomplete Multi-modal Brain Tumor Segmentation with Alignment [20.358300924109162]
In clinical practice, certain modalities of MRI may be missing, which presents a more difficult scenario.
Knowledge Distillation, Domain Adaption, and Shared Latent Space have emerged as commonly promising strategies.
We propose a novel paradigm that aligns latent features of involved modalities to a well-defined distribution anchor as the substitution of the pre-trained model.
arXiv Detail & Related papers (2024-08-18T13:16:30Z) - Enhancing Incomplete Multi-modal Brain Tumor Segmentation with Intra-modal Asymmetry and Inter-modal Dependency [31.047259264831947]
A common problem in practice is the unavailability of some modalities due to varying scanning protocols and patient conditions.
Previous methods have attempted to address this by fusing accessible multi-modal features, leveraging attention mechanisms, and synthesizing missing modalities.
We propose a novel approach that enhances the deep learning-based brain tumor segmentation model from two perspectives.
arXiv Detail & Related papers (2024-06-14T16:54:53Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - mmFormer: Multimodal Medical Transformer for Incomplete Multimodal
Learning of Brain Tumor Segmentation [38.22852533584288]
We propose a novel Medical Transformer (mmFormer) for incomplete multimodal learning with three main components.
The proposed mmFormer outperforms the state-of-the-art methods for incomplete multimodal brain tumor segmentation on almost all subsets of incomplete modalities.
arXiv Detail & Related papers (2022-06-06T08:41:56Z) - SMU-Net: Style matching U-Net for brain tumor segmentation with missing
modalities [4.855689194518905]
We propose a style matching U-Net (SMU-Net) for brain tumour segmentation on MRI images.
Our co-training approach utilizes a content and style-matching mechanism to distill the informative features from the full-modality network into a missing modality network.
Our style matching module adaptively recalibrates the representation space by learning a matching function to transfer the informative and textural features from a full-modality path into a missing-modality path.
arXiv Detail & Related papers (2022-04-06T17:55:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
The main problem is that not all types of MRIs are always available in clinical exams.
We propose a novel brain tumor segmentation network in the case of missing one or more modalities.
The proposed network consists of three sub-networks: a feature-enhanced generator, a correlation constraint block and a segmentation network.
arXiv Detail & Related papers (2021-11-08T10:59:40Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.