HashPoint: Accelerated Point Searching and Sampling for Neural Rendering
- URL: http://arxiv.org/abs/2404.14044v2
- Date: Sat, 11 May 2024 13:31:18 GMT
- Title: HashPoint: Accelerated Point Searching and Sampling for Neural Rendering
- Authors: Jiahao Ma, Miaomiao Liu, David Ahmedt-Aristizaba, Chuong Nguyen,
- Abstract summary: Two typical approaches are employed: renderingization and ray tracing.
The volumeization-based methods enable real-time rendering at the cost of increased memory and lower fidelity.
In contrast, the ray-tracing-based methods yield superior quality but demand longer time.
We solve this problem by our HashPoint method combining these two strategies.
- Score: 9.418401219498223
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we address the problem of efficient point searching and sampling for volume neural rendering. Within this realm, two typical approaches are employed: rasterization and ray tracing. The rasterization-based methods enable real-time rendering at the cost of increased memory and lower fidelity. In contrast, the ray-tracing-based methods yield superior quality but demand longer rendering time. We solve this problem by our HashPoint method combining these two strategies, leveraging rasterization for efficient point searching and sampling, and ray marching for rendering. Our method optimizes point searching by rasterizing points within the camera's view, organizing them in a hash table, and facilitating rapid searches. Notably, we accelerate the rendering process by adaptive sampling on the primary surface encountered by the ray. Our approach yields substantial speed-up for a range of state-of-the-art ray-tracing-based methods, maintaining equivalent or superior accuracy across synthetic and real test datasets. The code will be available at https://jiahao-ma.github.io/hashpoint/.
Related papers
- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
We present a method that avoids approximations that introduce bias into the renderings and, more importantly, the gradients used for optimization.
We show that by removing these biases our approach improves the generality of radiance cache based inverse rendering, as well as increasing quality in the presence of challenging light transport effects such as specular reflections.
arXiv Detail & Related papers (2024-09-09T17:59:57Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOT is a novel, simple and efficient method for solving the problem of point tracking in a video.
We show that DOT is significantly more accurate than current optical flow techniques, outperforms sophisticated "universal trackers" like OmniMotion, and is on par with, or better than, the best point tracking algorithms like CoTracker.
arXiv Detail & Related papers (2023-12-01T18:59:59Z) - RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time
Path Tracing [1.534667887016089]
MonteCarlo path tracing is a powerful technique for realistic image synthesis but suffers from high levels of noise at low sample counts.
We propose a framework with end-to-end training of a sampling importance network, a latent space encoder network, and a denoiser network.
arXiv Detail & Related papers (2023-10-05T12:39:27Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Our approach employs two stages: (1) a matching stage, which independently locates a suitable candidate point match for the query point on every other frame, and (2) a refinement stage, which updates both the trajectory and query features based on local correlations.
The resulting model surpasses all baseline methods by a significant margin on the TAP-Vid benchmark, as demonstrated by an approximate 20% absolute average Jaccard (AJ) improvement on DAVIS.
arXiv Detail & Related papers (2023-06-14T17:07:51Z) - FMapping: Factorized Efficient Neural Field Mapping for Real-Time Dense
RGB SLAM [3.6985351289638957]
We introduce FMapping, an efficient neural field mapping framework that facilitates the continuous estimation of a colorized point cloud map in real-time dense RGB SLAM.
We propose an effective factorization scheme for scene representation and introduce a sliding window strategy to reduce the uncertainty for scene reconstruction.
arXiv Detail & Related papers (2023-06-01T11:51:46Z) - Hierarchical Adaptive Voxel-guided Sampling for Real-time Applications
in Large-scale Point Clouds [6.094829692829813]
We propose a hierarchical adaptive voxel-guided point sampler with linear complexity and high parallelization for real-time applications.
Our method achieves competitive performance with the most powerful FPS, at an amazing speed that is more than 100 times faster.
Our sampler can be easily integrated into existing models and achieves a 20$sim$80% reduction in runtime with minimal effort.
arXiv Detail & Related papers (2023-05-23T17:45:49Z) - Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation [97.0195314255101]
Inverse path tracing is expensive to compute, and ambiguities exist between reflection and emission.
Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation.
Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities.
arXiv Detail & Related papers (2023-04-12T07:46:05Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment.
The dataset is based on the popular Habitat simulator, in which it is possible to generate indoor scenes using both own sensor data and open datasets.
arXiv Detail & Related papers (2022-12-30T12:20:56Z) - Fast Non-Rigid Radiance Fields from Monocularized Data [66.74229489512683]
This paper proposes a new method for full 360deg inward-facing novel view synthesis of non-rigidly deforming scenes.
At the core of our method are 1) An efficient deformation module that decouples the processing of spatial and temporal information for accelerated training and inference; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field.
In both cases, our method is significantly faster than previous methods, converging in less than 7 minutes and achieving real-time framerates at 1K resolution, while obtaining a higher visual accuracy for generated novel views.
arXiv Detail & Related papers (2022-12-02T18:51:10Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
Novel view synthesis has recently been revolutionized by learning neural radiance fields directly from sparse observations.
rendering images with this new paradigm is slow due to the fact that an accurate quadrature of the volume rendering equation requires a large number of samples for each ray.
We propose a novel dual-network architecture that takes an direction by learning how to best reduce the number of required sample points.
arXiv Detail & Related papers (2022-07-21T05:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.