DPTraj-PM: Differentially Private Trajectory Synthesis Using Prefix Tree and Markov Process
- URL: http://arxiv.org/abs/2404.14106v1
- Date: Mon, 22 Apr 2024 11:52:11 GMT
- Title: DPTraj-PM: Differentially Private Trajectory Synthesis Using Prefix Tree and Markov Process
- Authors: Nana Wang, Mohan Kankanhalli,
- Abstract summary: We propose DPTraj-PM, a method to synthesize trajectory dataset under the differential privacy framework.
DPTraj-PM discretizes the raw trajectories into neighboring cells, and models them by combining a prefix tree structure and an m-order Markov process.
The output traces crafted by DPTraj-PM not only preserves the patterns and variability in individuals' mobility behaviors, but also protects individual privacy.
- Score: 1.800676987432211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing use of GPS-enabled devices has generated a large amount of trajectory data. These data offer us vital insights to understand the movements of individuals and populations, benefiting a broad range of applications from transportation planning to epidemic modeling. However, improper release of trajectory data is increasing concerns on individual privacy. Previous attempts either lack strong privacy guarantees, or fail to preserve sufficient basic characteristics of the original data. In this paper, we propose DPTraj-PM, a method to synthesize trajectory dataset under the differential privacy (DP) framework while ensures high data utility. Based on the assumption that an individual's trajectory could be mainly determined by the initial trajectory segment (which depicts the starting point and the initial direction) and the next location point, DPTraj-PM discretizes the raw trajectories into neighboring cells, and models them by combining a prefix tree structure and an m-order Markov process. After adding noise to the model under differential privacy, DPTraj-PM generates a synthetic dataset from the noisy model to enable a wider spectrum of data mining and modeling tasks. The output traces crafted by DPTraj-PM not only preserves the patterns and variability in individuals' mobility behaviors, but also protects individual privacy. Experiments on two real-world datasets demonstrate that DPTraj-PM substantially outperforms the state-of-the-art techniques in terms of data utility. Our code is available at https://github.com/wnn5/DP-PrefixTreeMarkov.
Related papers
- Differentially Private Spatiotemporal Trajectory Synthesis with Retained Data Utility [0.3277163122167433]
DP-STTS is a differentially private synthesizer with high data utility.
Synthetic trajectories are generated from the noisy model.
Experiments one real-life dataset demonstrate that DP-STTS provides good data utility.
arXiv Detail & Related papers (2024-08-23T05:17:36Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - A Trajectory K-Anonymity Model Based on Point Density and Partition [0.0]
This paper develops a trajectory K-anonymity model based on Point Density and Partition (K PDP)
It successfully resists re-identification attacks and reduces the data utility loss of the k-anonymized dataset.
arXiv Detail & Related papers (2023-07-31T17:10:56Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - DataLens: Scalable Privacy Preserving Training via Gradient Compression
and Aggregation [15.63770709526671]
We propose a scalable privacy-preserving generative model DATALENS.
We show that, DATALENS significantly outperforms other baseline DP generative models.
We adapt the proposed TOPAGG approach, which is one of the key building blocks in DATALENS, to DP SGD training.
arXiv Detail & Related papers (2021-03-20T06:14:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.