論文の概要: Offensive AI: Enhancing Directory Brute-forcing Attack with the Use of Language Models
- arxiv url: http://arxiv.org/abs/2404.14138v1
- Date: Mon, 22 Apr 2024 12:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 13:56:54.407591
- Title: Offensive AI: Enhancing Directory Brute-forcing Attack with the Use of Language Models
- Title(参考訳): 攻撃的AI: 言語モデルを用いたディレクタのブルート強制攻撃を強化する
- Authors: Alberto Castagnaro, Mauro Conti, Luca Pajola,
- Abstract要約: Offensive AIは、AIベースの技術をサイバー攻撃に統合するパラダイムである。
そこで本研究では,AIがディレクトリ列挙プロセスを強化し,新しい言語モデルベースのフレームワークを提案する。
実験は、異なるWebアプリケーションドメインから100万のURLからなるテストベッドで実施され、平均パフォーマンスが969%向上したLMベースの攻撃の優位性を実証した。
- 参考スコア(独自算出の注目度): 16.89878267176532
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Web Vulnerability Assessment and Penetration Testing (Web VAPT) is a comprehensive cybersecurity process that uncovers a range of vulnerabilities which, if exploited, could compromise the integrity of web applications. In a VAPT, it is common to perform a \textit{Directory brute-forcing Attack}, aiming at the identification of accessible directories of a target website. Current commercial solutions are inefficient as they are based on brute-forcing strategies that use wordlists, resulting in enormous quantities of trials for a small amount of success. Offensive AI is a recent paradigm that integrates AI-based technologies in cyber attacks. In this work, we explore whether AI can enhance the directory enumeration process and propose a novel Language Model-based framework. Our experiments -- conducted in a testbed consisting of 1 million URLs from different web application domains (universities, hospitals, government, companies) -- demonstrate the superiority of the LM-based attack, with an average performance increase of 969%.
- Abstract(参考訳): Web Vulnerability Assessment and Peretration Testing (Web VAPT)は、Webアプリケーションの完全性を損なう可能性のある、さまざまな脆弱性を明らかにする包括的なサイバーセキュリティプロセスである。
VAPTでは、ターゲット Web サイトのアクセス可能なディレクトリの識別を目的とした \textit{Directory brute-forcing Attack} を実行するのが一般的である。
現在の商用ソリューションは、ワードリストを使用するブルート強制戦略に基づいており、少数の成功のために膨大な試行が行われるため、非効率である。
攻撃的AIは、サイバー攻撃にAIベースの技術を統合する最近のパラダイムである。
そこで本研究では,AIがディレクトリ列挙プロセスを強化し,新しい言語モデルベースのフレームワークを提案する。
実験は、異なるWebアプリケーションドメイン(大学、病院、政府、企業)から100万のURLからなるテストベッドで実施され、LMベースの攻撃の優位性を実証し、平均的なパフォーマンスは969%向上した。
関連論文リスト
- WILBUR: Adaptive In-Context Learning for Robust and Accurate Web Agents [1.9352015147920767]
Wilburは、微分可能なランキングモデルと新しい命令合成手法を用いるアプローチである。
そこで本研究では,代表的目標を抽出する生成的オートカリキュラムのデータに基づいてランキングモデルをトレーニング可能であることを示す。
Wilbur氏はWebVoyagerベンチマークで最先端の結果を達成し、テキストのみのモデルを全体の8%、特定のウェブサイトで最大36%上回った。
論文 参考訳(メタデータ) (2024-04-08T23:10:47Z) - SENet: Visual Detection of Online Social Engineering Attack Campaigns [3.858859576352153]
ソーシャルエンジニアリング(SE)は、ユーザのセキュリティとプライバシを侵害する可能性のあるアクションの実行をユーザを欺くことを目的としている。
SEShieldは、ブラウザ内でソーシャルエンジニアリング攻撃を検出するためのフレームワークである。
論文 参考訳(メタデータ) (2024-01-10T22:25:44Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - Getting pwn'd by AI: Penetration Testing with Large Language Models [0.0]
本稿では,GPT3.5のような大規模言語モデルによるAIスパーリングパートナーによる浸透テストの強化の可能性について検討する。
セキュリティテストの課題のためのハイレベルなタスクプランニングと、脆弱な仮想マシン内での低レベルな脆弱性ハンティングである。
論文 参考訳(メタデータ) (2023-07-24T19:59:22Z) - A LLM Assisted Exploitation of AI-Guardian [57.572998144258705]
IEEE S&P 2023で発表された敵に対する最近の防衛であるAI-Guardianの堅牢性を評価する。
我々は、このモデルを攻撃するためのコードを書かず、代わりに、GPT-4に命令とガイダンスに従って全ての攻撃アルゴリズムを実装するよう促します。
このプロセスは驚くほど効果的で効率的であり、言語モデルでは、この論文の著者が実行したよりも高速に曖昧な命令からコードを生成することもあった。
論文 参考訳(メタデータ) (2023-07-20T17:33:25Z) - DDoD: Dual Denial of Decision Attacks on Human-AI Teams [29.584936458736813]
我々は,協調型AIチームに対するSMSD(TextitDual Denial of Decision)攻撃を提案する。
本稿では,テキストと人的資源を減らし,意思決定能力を著しく損なうことを目的とした攻撃について論じる。
論文 参考訳(メタデータ) (2022-12-07T22:30:17Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Towards Practical Deployment-Stage Backdoor Attack on Deep Neural
Networks [5.231607386266116]
ディープラーニングモデルに対するデプロイステージバックドア攻撃の現実的な脅威について検討する。
バックドアインジェクションのための最初のグレーボックスと物理的に実現可能な重み攻撃アルゴリズムを提案する。
本研究は,攻撃アルゴリズムの有効性と実用性を示すものである。
論文 参考訳(メタデータ) (2021-11-25T08:25:27Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。