Experimental Validation of Ultrasound Beamforming with End-to-End Deep Learning for Single Plane Wave Imaging
- URL: http://arxiv.org/abs/2404.14188v1
- Date: Mon, 22 Apr 2024 13:58:36 GMT
- Title: Experimental Validation of Ultrasound Beamforming with End-to-End Deep Learning for Single Plane Wave Imaging
- Authors: Ryan A. L. Schoop, Gijs Hendriks, Tristan van Leeuwen, Chris L. de Korte, Felix Lucka,
- Abstract summary: Ultrafast ultrasound imaging insonifies a medium with one or a combination of a few plane waves at different beam-steered angles instead of many focused waves.
Deep learning approaches have been proposed to mitigate this disadvantage, in particular for single plane wave imaging.
We consider data-to-image networks which incorporate a conventional image formation techniques as differentiable layers in the network architecture.
- Score: 0.810120481608724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrafast ultrasound imaging insonifies a medium with one or a combination of a few plane waves at different beam-steered angles instead of many focused waves. It can achieve much higher frame rates, but often at the cost of reduced image quality. Deep learning approaches have been proposed to mitigate this disadvantage, in particular for single plane wave imaging. Predominantly, image-to-image post-processing networks or fully learned data-to-image neural networks are used. Both construct their mapping purely data-driven and require expressive networks and large amounts of training data to perform well. In contrast, we consider data-to-image networks which incorporate a conventional image formation techniques as differentiable layers in the network architecture. This allows for end-to-end training with small amounts of training data. In this work, using f-k migration as an image formation layer is evaluated in-depth with experimental data. We acquired a data collection designed for benchmarking data-driven plane wave imaging approaches using a realistic breast mimicking phantom and an ultrasound calibration phantom. The evaluation considers global and local image similarity measures and contrast, resolution and lesion detectability analysis. The results show that the proposed network architecture is capable of improving the image quality of single plane wave images on all evaluation metrics. Furthermore, these image quality improvements can be achieved with surprisingly little amounts of training data.
Related papers
- Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
High frame-rate ultrasound imaging is a cutting-edge technique that enables high frame-rate imaging.
One challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption.
Our proposed solution aims to enhance plane wave image quality.
Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise.
In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes.
arXiv Detail & Related papers (2024-08-20T16:31:31Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms.
Recently, deep learning (DL) methods have been used for more accurate holographic processing.
We propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality.
arXiv Detail & Related papers (2022-05-25T17:13:45Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Single Plane-Wave Imaging using Physics-Based Deep Learning [2.1410799064827226]
In plane-wave imaging, multiple unfocused ultrasound waves are transmitted into a medium of interest from different angles.
Deep learning methods have been proposed to improve ultrasound imaging.
We propose a data-to-image architecture that incorporates a wave-physics-based image formation algorithm in-between deep convolutional neural networks.
arXiv Detail & Related papers (2021-09-08T14:06:29Z) - From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real
Data [58.50411487497146]
We propose a novel image dehazing framework collaborating with unlabeled real data.
First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps.
Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing.
arXiv Detail & Related papers (2021-08-06T04:00:28Z) - Fast ultrasonic imaging using end-to-end deep learning [1.0266286487433585]
Deep neural networks (DNNs) are being used for the data pre-processing and the image post-processing steps separately.
We propose a novel deep learning architecture that integrates all three steps to enable end-to-end training.
arXiv Detail & Related papers (2020-09-04T13:53:46Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality.
Due to challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data.
We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset.
arXiv Detail & Related papers (2020-06-10T00:33:18Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
We present a machine-learning approach to classifying the phases of surface wave dispersion curves.
Standard FTAN analysis of surfaces observed on an array of receivers is converted to an image.
We use a convolutional neural network (U-net) architecture with a supervised learning objective and incorporate transfer learning.
arXiv Detail & Related papers (2020-02-05T23:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.