BCFPL: Binary classification ConvNet based Fast Parking space recognition with Low resolution image
- URL: http://arxiv.org/abs/2404.14198v1
- Date: Mon, 22 Apr 2024 14:07:42 GMT
- Title: BCFPL: Binary classification ConvNet based Fast Parking space recognition with Low resolution image
- Authors: Shuo Zhang, Xin Chen, Zixuan Wang,
- Abstract summary: We proposed a binary convolutional neural network with lightweight design structure named BCFPL, which can be used to train with low-resolution parking space images.
The experimental results show that the accuracy of BCFPL does not decrease compared with the original resolution image.
BCFPL also has low hardware requirements and fast recognition speed while meeting the privacy requirements, so it has application potential in intelligent city construction and automatic driving field.
- Score: 15.383714894648753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The automobile plays an important role in the economic activities of mankind, especially in the metropolis. Under the circumstances, the demand of quick search for available parking spaces has become a major concern for the automobile drivers. Meanwhile, the public sense of privacy is also awaking, the image-based parking space recognition methods lack the attention of privacy protection. In this paper, we proposed a binary convolutional neural network with lightweight design structure named BCFPL, which can be used to train with low-resolution parking space images and offer a reasonable recognition result. The images of parking space were collected from various complex environments, including different weather, occlusion conditions, and various camera angles. We conducted the training and testing progresses among different datasets and partial subsets. The experimental results show that the accuracy of BCFPL does not decrease compared with the original resolution image directly, and can reach the average level of the existing mainstream method. BCFPL also has low hardware requirements and fast recognition speed while meeting the privacy requirements, so it has application potential in intelligent city construction and automatic driving field.
Related papers
- Atmospheric Noise-Resilient Image Classification in a Real-World Scenario: Using Hybrid CNN and Pin-GTSVM [1.3654846342364308]
This paper proposes a novel hybrid model with a pre-trained feature extractor and a Pinball Generalized Twin Support Vector Machine (Pin-GTSVM)
The proposed system can seamlessly integrate with conventional smart parking infrastructures, leveraging a minimal number of cameras to monitor and manage hundreds of parking spaces efficiently.
arXiv Detail & Related papers (2025-01-23T06:53:35Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - Spatial-temporal Vehicle Re-identification [3.7748602100709534]
We propose a spatial-temporal vehicle ReID framework that estimates reliable camera network topology.
Based on the proposed methods, we performed superior performance on the public dataset (VeRi776) by 99.64% of rank-1 accuracy.
arXiv Detail & Related papers (2023-09-03T13:07:38Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Automatic Vision-Based Parking Slot Detection and Occupancy
Classification [3.038642416291856]
Parking guidance information (PGI) systems are used to provide information to drivers about the nearest parking lots and the number of vacant parking slots.
Recently, vision-based solutions started to appear as a cost-effective alternative to standard PGI systems.
In this paper, the algorithm that performs Automatic Parking Slot Detection and Occupancy Classification (APSD-OC) solely on input images is proposed.
arXiv Detail & Related papers (2023-08-16T07:44:34Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Smart Parking Space Detection under Hazy conditions using Convolutional
Neural Networks: A Novel Approach [0.0]
This paper investigates the use of dehazing networks that improves the performance of parking space occupancy under hazy conditions.
The proposed system is deployable as part of existing smart parking systems where limited number of cameras are used to monitor hundreds of parking spaces.
arXiv Detail & Related papers (2022-01-15T14:15:46Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.