論文の概要: Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity
- arxiv url: http://arxiv.org/abs/2404.14240v1
- Date: Mon, 22 Apr 2024 14:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 13:37:25.098283
- Title: Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity
- Title(参考訳): 拡散モデルに基づく協調フィルタリング:高次接続性の可能性を探る
- Authors: Yu Hou, Jin-Duk Park, Won-Yong Shin,
- Abstract要約: CF-Diffは新しい拡散モデルに基づく協調フィルタリング手法である。
マルチホップの隣人と一緒に、協調的な信号を完全に活用することができる。
最高の競争相手に比べて7.29%も上昇している。
- 参考スコア(独自算出の注目度): 10.683635786183894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A recent study has shown that diffusion models are well-suited for modeling the generative process of user-item interactions in recommender systems due to their denoising nature. However, existing diffusion model-based recommender systems do not explicitly leverage high-order connectivities that contain crucial collaborative signals for accurate recommendations. Addressing this gap, we propose CF-Diff, a new diffusion model-based collaborative filtering (CF) method, which is capable of making full use of collaborative signals along with multi-hop neighbors. Specifically, the forward-diffusion process adds random noise to user-item interactions, while the reverse-denoising process accommodates our own learning model, named cross-attention-guided multi-hop autoencoder (CAM-AE), to gradually recover the original user-item interactions. CAM-AE consists of two core modules: 1) the attention-aided AE module, responsible for precisely learning latent representations of user-item interactions while preserving the model's complexity at manageable levels, and 2) the multi-hop cross-attention module, which judiciously harnesses high-order connectivity information to capture enhanced collaborative signals. Through comprehensive experiments on three real-world datasets, we demonstrate that CF-Diff is (a) Superior: outperforming benchmark recommendation methods, achieving remarkable gains up to 7.29% compared to the best competitor, (b) Theoretically-validated: reducing computations while ensuring that the embeddings generated by our model closely approximate those from the original cross-attention, and (c) Scalable: proving the computational efficiency that scales linearly with the number of users or items.
- Abstract(参考訳): 近年の研究では、拡散モデルがレコメンデータシステムにおけるユーザ・イテム相互作用の生成過程のモデル化に適していることが示されている。
しかし、既存の拡散モデルに基づくレコメンデーションシステムは、正確なレコメンデーションのために重要な協調信号を含む高次接続性を明示的に活用していない。
このギャップに対処するため, CF-Diffを提案する。CF-Diffは拡散モデルに基づく協調フィルタリング(CF)手法で, マルチホップ隣人とともに協調信号を完全に活用できる。
具体的には、前方拡散プロセスは、ユーザとイテムのインタラクションにランダムノイズを付加する一方、リバースデノベーションプロセスは、クロスアテンション誘導マルチホップオートエンコーダ(CAM-AE)と呼ばれる独自の学習モデルに対応し、元のユーザとイテムのインタラクションを徐々に回復させる。
CAM-AEは2つのコアモジュールから構成される。
1)注意支援型AEモジュールは、管理可能なレベルでモデルの複雑さを保ちながら、ユーザ・イテム相互作用の潜在表現を正確に学習する。
2)マルチホップ・クロスアテンションモジュールは,高次接続情報を利用して協調的な信号の収集を行う。
3つの実世界のデータセットに関する総合的な実験を通して、CF-Diffが証明される。
(a)スペリオル:ベンチマークレコメンデーション手法より優れており、最高の競合相手に比べて7.29%も顕著に向上している。
b)理論上の検証: 計算を削減しつつ、我々のモデルが生成した埋め込みを元のクロスアテンションから密接に近似させ、
(c) スケーラブル: ユーザ数や項目数と線形にスケールする計算効率を証明すること。
関連論文リスト
- Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Relation Modeling and Distillation for Learning with Noisy Labels [4.556974104115929]
本稿では,自己教師型学習を通して,サンプル間の関係をモデル化する関係モデリングと蒸留の枠組みを提案する。
提案手法は,ノイズの多いデータに対する識別表現を学習し,既存の手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T01:47:27Z) - Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling [19.60087366873302]
マルチフィデリティ・サロゲートモデリングは,最も高いフィデリティレベルで正確なサロゲートを学習することを目的としている。
ディープラーニングアプローチでは、ニューラルネットワークベースのエンコーダとデコーダを使用してスケーラビリティを向上させる。
本稿では,MFRNP(Multi-fidelity Residual Neural Processs)を提案する。
論文 参考訳(メタデータ) (2024-02-29T04:40:25Z) - Graph Signal Diffusion Model for Collaborative Filtering [22.727100820178414]
協調フィルタリングはレコメンデータシステムにおいて重要な手法である。
拡散モデルに関する既存の研究は、暗黙のフィードバックをモデル化するための効果的な解決策を欠いている。
協調フィルタリングのためのグラフ信号拡散モデル(GiffCF)を提案する。
論文 参考訳(メタデータ) (2023-11-15T07:25:14Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
新たな自己監督型推薦フレームワークHypergraph Contrastive Collaborative Filtering (HCCF)を提案する。
HCCFは、ハイパーグラフを拡張したクロスビューコントラスト学習アーキテクチャと、ローカルおよびグローバルなコラボレーティブな関係をキャプチャする。
提案モデルでは,ハイパーグラフ構造と自己教師付き学習を効果的に統合し,レコメンダシステムの表現品質を向上する。
論文 参考訳(メタデータ) (2022-04-26T10:06:04Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。