Quantum-Enhanced Neural Exchange-Correlation Functionals
- URL: http://arxiv.org/abs/2404.14258v2
- Date: Fri, 6 Sep 2024 11:44:23 GMT
- Title: Quantum-Enhanced Neural Exchange-Correlation Functionals
- Authors: Igor O. Sokolov, Gert-Jan Both, Art D. Bochevarov, Pavel A. Dub, Daniel S. Levine, Christopher T. Brown, Shaheen Acheche, Panagiotis Kl. Barkoutsos, Vincent E. Elfving,
- Abstract summary: KohnSham Density Functional Theory (KS-DFT) provides the exact ground state energy and electron density of a molecule, contingent on the asyet unknown universal exchange-correlation (XC) functional.
Recent research has demonstrated that neural networks can efficiently learn to represent approximations to that functional, offering accurate generalizations to molecules not present during the training process.
With the latest advancements in quantum-enhanced machine learning (ML), evidence is growing that Quantum Neural Network (QNN) models may offer advantages in ML applications.
- Score: 0.193482901474023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kohn-Sham Density Functional Theory (KS-DFT) provides the exact ground state energy and electron density of a molecule, contingent on the as-yet-unknown universal exchange-correlation (XC) functional. Recent research has demonstrated that neural networks can efficiently learn to represent approximations to that functional, offering accurate generalizations to molecules not present during the training process. With the latest advancements in quantum-enhanced machine learning (ML), evidence is growing that Quantum Neural Network (QNN) models may offer advantages in ML applications. In this work, we explore the use of QNNs for representing XC functionals, enhancing and comparing them to classical ML techniques. We present QNNs based on differentiable quantum circuits (DQCs) as quantum (hybrid) models for XC in KS-DFT, implemented across various architectures. We assess their performance on 1D and 3D systems. To that end, we expand existing differentiable KS-DFT frameworks and propose strategies for efficient training of such functionals, highlighting the importance of fractional orbital occupation for accurate results. Our best QNN-based XC functional yields energy profiles of the H$_2$ and planar H$_4$ molecules that deviate by no more than 1 mHa from the reference DMRG and FCI/6-31G results, respectively. Moreover, they reach chemical precision on a system, H$_2$H$_2$, not present in the training dataset, using only a few variational parameters. This work lays the foundation for the integration of quantum models in KS-DFT, thereby opening new avenues for expressing XC functionals in a differentiable way and facilitating computations of various properties.
Related papers
- Learning Equivariant Non-Local Electron Density Functionals [51.721844709174206]
We introduce Equivariant Graph Exchange Correlation (EG-XC), a novel non-local XC functional based on equivariant graph neural networks.
EG-XC combines semi-local functionals with a non-local feature density parametrized by an equivariant nuclei-centered point cloud representation.
We find EG-XC to accurately reconstruct gold-standard' CCSD(T) energies on MD17.
arXiv Detail & Related papers (2024-10-10T14:31:45Z) - Learning local and semi-local density functionals from exact exchange-correlation potentials and energies [1.5088726951324294]
Finding accurate exchange-correlation (XC) functionals remains the defining challenge in density functional theory (DFT)
We present a data-driven pathway to learn the XC functionals by utilizing the exact density, XC energy, and XC potential.
arXiv Detail & Related papers (2024-09-10T13:26:37Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - NeuralNEB -- Neural Networks can find Reaction Paths Fast [7.7365628406567675]
Quantum mechanical methods like Density Functional Theory (DFT) are used with great success alongside efficient search algorithms for studying kinetics of reactive systems.
Machine Learning (ML) models have turned out to be excellent emulators of small molecule DFT calculations and could possibly replace DFT in such tasks.
In this paper we train state of the art equivariant Graph Neural Network (GNN)-based models on around 10.000 elementary reactions from the Transition1x dataset.
arXiv Detail & Related papers (2022-07-20T15:29:45Z) - Toward Physically Realizable Quantum Neural Networks [15.018259942339446]
Current solutions for quantum neural networks (QNNs) pose challenges concerning their scalability.
The exponential state space of QNNs poses challenges for the scalability of training procedures.
This paper presents a new model for QNNs that relies on band-limited Fourier expansions of transfer functions of quantum perceptrons.
arXiv Detail & Related papers (2022-03-22T23:03:32Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
subsystem-DFT (sDFT) can dramatically reduce the computational cost of large-scale electronic structure calculations.
The key ingredients of sDFT are the nonadditive kinetic energy and exchange-correlation functionals which dominate it's accuracy.
eQE 2.0 delivers excellent interaction energies compared to conventional Kohn-Sham DFT and CCSD(T)
arXiv Detail & Related papers (2021-03-12T22:26:36Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
We train a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory framework.
Our trained exchange-correlation network provided improved prediction of atomization and ionization energies across a collection of 110 molecules.
arXiv Detail & Related papers (2021-02-08T14:25:10Z) - On the equivalence of molecular graph convolution and molecular wave
function with poor basis set [7.106986689736826]
We describe the quantum deep field (QDF), a machine learning model based on an underlying quantum physics.
For molecular energy prediction tasks, we demonstrated the viability of an extrapolation,'' in which we trained a QDF model with small molecules, tested it with large molecules, and achieved high performance.
arXiv Detail & Related papers (2020-11-16T13:20:35Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.