Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
- URL: http://arxiv.org/abs/2404.14367v3
- Date: Sun, 2 Jun 2024 22:00:42 GMT
- Title: Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
- Authors: Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano Ermon, Chelsea Finn, Aviral Kumar,
- Abstract summary: Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
- Score: 102.16105233826917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.
Related papers
- Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [44.95386817008473]
We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data.
We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient.
We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task.
arXiv Detail & Related papers (2024-06-27T14:03:49Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori.
We propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function.
arXiv Detail & Related papers (2020-12-30T09:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.