Efficient Response Generation Strategy Selection for Fine-Tuning Large Language Models Through Self-Aligned Perplexity
- URL: http://arxiv.org/abs/2502.11779v2
- Date: Tue, 08 Apr 2025 13:56:38 GMT
- Title: Efficient Response Generation Strategy Selection for Fine-Tuning Large Language Models Through Self-Aligned Perplexity
- Authors: Xuan Ren, Qi Chen, Lingqiao Liu,
- Abstract summary: Fine-tuning large language models (LLMs) typically relies on producing large sets of input-output pairs.<n>Recent findings show that how these training outputs are generated can significantly affect the performance of the fine-tuned model.<n>This paper proposes a scalable approximate method that assesses a small subset of generated data to estimate its suitability for a specific target LLM.
- Score: 28.717420152590204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) typically relies on producing large sets of input-output pairs. Yet for a given question, there can be many valid outputs. In practice, these outputs are often derived by distilling knowledge from teacher models, and they can vary depending on the specific teacher model or prompting strategy employed. Recent findings show that how these training outputs are generated can significantly affect the performance of the fine-tuned model, raising an important question: how do we pick the best data generation method from among numerous possibilities? Rather than exhaustively training and evaluating on each candidate, this paper proposes a scalable approximate method that assesses a small subset of generated data to estimate its suitability for a specific target LLM. Our central idea is that effective outputs should be familiar to the target LLM. While previous work measures familiarity with perplexity, we find that perplexity might be suboptimal in characterizing 'familiarity' through theoretical analysis and practical observations. To address this, we introduce self-aligned perplexity, a novel metric capturing how closely candidate outputs adhere to the target LLM's own style and reasoning patterns. In this way, we can identify the most effective generation strategy on a small sample, then apply it to produce the complete training set. We demonstrate that training on data generated by the chosen method yields significant improvements across diverse reasoning-focused benchmarks.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Scalable Influence and Fact Tracing for Large Language Model Pretraining [14.598556308631018]
Training data attribution (TDA) methods aim to attribute model outputs back to specific training examples.<n>We refine existing gradient-based methods to work effectively at scale.<n>We release our prompt set and model outputs, along with a web-based visualization tool to explore influential examples.
arXiv Detail & Related papers (2024-10-22T20:39:21Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.