Temporal Entanglement Barriers in Dual-Unitary Clifford Circuits with Measurements
- URL: http://arxiv.org/abs/2404.14374v3
- Date: Tue, 26 Nov 2024 11:29:37 GMT
- Title: Temporal Entanglement Barriers in Dual-Unitary Clifford Circuits with Measurements
- Authors: Jiangtian Yao, Pieter W. Claeys,
- Abstract summary: We study temporal entanglement in dual-unitary Clifford circuits with probabilistic measurements preserving spatial unitarity.
We precisely characterize the temporal entanglement barrier in the measurement-free regime, exhibiting ballistic growth and decay and a volume-law peak.
- Score: 0.0
- License:
- Abstract: We study temporal entanglement in dual-unitary Clifford circuits with probabilistic measurements preserving spatial unitarity. We exactly characterize the temporal entanglement barrier in the measurement-free regime, exhibiting ballistic growth and decay and a volume-law peak. In the presence of measurements, we relate the temporal entanglement to the scrambling properties of the circuit. For "good scramblers" measurements do not qualitatively change the temporal entanglement profile but only result in a reduced entanglement velocity, whereas for "poor scramblers" the initial ballistic growth of temporal entanglement with bath size is modified to diffusive. This difference is understood through a mapping of the underlying operator dynamics to a biased and an unbiased persistent random walk respectively. In the latter case measurements additionally modify the ballistic decay to the perfect dephaser limit, with vanishing temporal entanglement, to an exponential decay, which we describe through a spatial transfer matrix method. This spatial dynamics is shown to be described by a non-Hermitian hopping model, exhibiting a PT-breaking transition at a critical measurement rate $p=1/2$. In all cases the peak value of the temporal entanglement barrier exhibits volume-law scaling for all measurement rates.
Related papers
- Infinitely fast critical dynamics: Teleportation through temporal rare regions in monitored quantum circuits [0.0]
spatially correlated fluctuations in the measurement rate disrupt the volume-law phase for low measurement rates.
At a critical measurement rate, they give rise to an entanglement phase transition with "ultrafast" dynamics.
We provide a physical interpretation of these phases, and support it with extensive numerical simulations of information propagation and entanglement dynamics in stabilizer circuits.
arXiv Detail & Related papers (2024-11-05T19:00:11Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal [46.348283638884425]
This paper introduces a reverse Latent Evolution Model (rLEM) designed for temporal phase of forward beam dynamics.
In this two-step self-supervised deep learning framework, we utilize a Conditional Autoencoder (CVAE) to project 6D space projections of a charged particle beam into a lower-dimensional latent distribution.
We then autoregressively learn the inverse temporal dynamics in the latent space using a Long Short-Term Memory (LSTM) network.
arXiv Detail & Related papers (2024-08-14T23:09:01Z) - Breakdown of Measurement-Induced Phase Transitions Under Information Loss [39.36827689390718]
A quantum-many body system can feature measurement-induced phase transitions (MIPTs)
MIPTs cannot be revealed through ensemble-averaged observables, but it requires the ability to discriminate each trajectory separately.
We explore the fate of MIPTs under an observer's reduced ability to discriminate each measurement outcome.
arXiv Detail & Related papers (2024-07-18T18:10:52Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Entanglement and charge-sharpening transitions in U(1) symmetric
monitored quantum circuits [1.1968749490556412]
We study how entanglement dynamics in non-unitary quantum circuits can be enriched in the presence of charge conservation.
We uncover a charge-sharpening transition that separates different scrambling phases with volume-law scaling of entanglement.
We find that while R'enyi entropies grow sub-ballistically as $sqrttt$ in the absence of measurement, for even an infinitesimal rate of measurements, all average R'enyi entropies grow ballistically with time.
arXiv Detail & Related papers (2021-07-21T18:00:13Z) - Decoherent Quench Dynamics across Quantum Phase Transitions [0.0]
We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian.
We generalize the well-studied universal Kibble-Zurek behavior for linear temporal drive across the critical point.
We show that the freeze-out time scale can be probed from the relaxation of the Hall conductivity.
arXiv Detail & Related papers (2021-03-14T23:43:55Z) - Diffusive-to-ballistic crossover of symmetry violation in open many-body
systems [0.0]
We study the dynamics of textitsymmetry violation in quantum many-body systems with slight coherent (at strength $lambda$) or incoherent breaking of their local and global symmetries.
We show that symmetry breaking generically leads to a crossover in the divergence growth from diffusive behavior at onset times to ballistic or hyperballistic scaling at intermediate times, before diffusion dominates at long times.
arXiv Detail & Related papers (2020-09-30T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.