Infinitely fast critical dynamics: Teleportation through temporal rare regions in monitored quantum circuits
- URL: http://arxiv.org/abs/2411.03442v1
- Date: Tue, 05 Nov 2024 19:00:11 GMT
- Title: Infinitely fast critical dynamics: Teleportation through temporal rare regions in monitored quantum circuits
- Authors: Gal Shkolnik, Sarang Gopalakrishnan, David A. Huse, Snir Gazit, J. H. Pixley,
- Abstract summary: spatially correlated fluctuations in the measurement rate disrupt the volume-law phase for low measurement rates.
At a critical measurement rate, they give rise to an entanglement phase transition with "ultrafast" dynamics.
We provide a physical interpretation of these phases, and support it with extensive numerical simulations of information propagation and entanglement dynamics in stabilizer circuits.
- Score: 0.0
- License:
- Abstract: We consider measurement-induced phase transitions in monitored quantum circuits with a measurement rate that fluctuates in time. The spatially correlated fluctuations in the measurement rate disrupt the volume-law phase for low measurement rates; at a critical measurement rate, they give rise to an entanglement phase transition with "ultrafast" dynamics, i.e., spacetime ($x,t$) scaling $\log x \sim t^{\psi_\tau}$. The ultrafast dynamics at the critical point can be viewed as a spacetime-rotated version of an infinite-randomness critical point; despite the spatial locality of the dynamics, ultrafast information propagation is possible because of measurement-induced quantum teleportation. We identify temporal Griffiths phases on either side of this critical point. We provide a physical interpretation of these phases, and support it with extensive numerical simulations of information propagation and entanglement dynamics in stabilizer circuits.
Related papers
- Orthogonality catastrophe and quantum speed limit for dynamical quantum
phase transition [3.8018284259144344]
We show that exact zeros of the Loschmidt echo can exist in finite-size systems for specific discrete values.
We find the possibility of using the quantum speed limit to detect the critical point of a static quantum phase transition.
arXiv Detail & Related papers (2023-08-09T03:48:06Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - The Sub-Exponential Critical Slowing Down at Floquet Time Crystal Phase
Transition [4.353446104859767]
We study critical dynamics near the Floquet time crystal phase transition.
Its critical behavior is described by introducing a space-time coarse grained correlation function.
We show the relaxation time has a universal sub-exponential scaling near the critical point.
arXiv Detail & Related papers (2023-01-17T13:28:32Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Field theory of charge sharpening in symmetric monitored quantum
circuits [0.2936007114555107]
Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling.
MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order.
We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations.
arXiv Detail & Related papers (2021-11-17T19:00:28Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.