A mean curvature flow arising in adversarial training
- URL: http://arxiv.org/abs/2404.14402v1
- Date: Mon, 22 Apr 2024 17:58:36 GMT
- Title: A mean curvature flow arising in adversarial training
- Authors: Leon Bungert, Tim Laux, Kerrek Stinson,
- Abstract summary: We connect adversarial training for binary classification to a geometric evolution equation for the decision boundary.
We prove that the scheme is monotone and consistent as the adversarial budget vanishes and the perimeter localizes.
This highlights that the efficacy of adversarial training may be due to locally minimizing the length of the decision boundary.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We connect adversarial training for binary classification to a geometric evolution equation for the decision boundary. Relying on a perspective that recasts adversarial training as a regularization problem, we introduce a modified training scheme that constitutes a minimizing movements scheme for a nonlocal perimeter functional. We prove that the scheme is monotone and consistent as the adversarial budget vanishes and the perimeter localizes, and as a consequence we rigorously show that the scheme approximates a weighted mean curvature flow. This highlights that the efficacy of adversarial training may be due to locally minimizing the length of the decision boundary. In our analysis, we introduce a variety of tools for working with the subdifferential of a supremal-type nonlocal total variation and its regularity properties.
Related papers
- TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
We propose a two-step method with a novel fused-regularizer to improve the learning performance on a target task with limited samples.
Nonasymptotic bound is provided for the estimation error of the target model.
We extend the method to a distributed setting, allowing for a pretraining-finetuning strategy.
arXiv Detail & Related papers (2024-04-01T14:58:16Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - It begins with a boundary: A geometric view on probabilistically robust learning [6.877576704011329]
We take a fresh and geometric view on one such method -- Probabilistically Robust Learning (PRL)
We prove existence of solutions to the original and modified problems using novel relaxation methods.
We also clarify, through a suitable $Gamma$-convergence analysis, the way in which the original and modified PRL models interpolate between risk minimization and adversarial training.
arXiv Detail & Related papers (2023-05-30T06:24:30Z) - The Geometry of Adversarial Training in Binary Classification [1.2891210250935143]
We establish an equivalence between a family of adversarial training problems for non-parametric binary classification and a family of regularized risk minimization problems.
The resulting regularized risk minimization problems admit exact convex relaxations of the type $L1+$ (nonlocal) $operatornameTV$.
arXiv Detail & Related papers (2021-11-26T17:19:50Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
This paper investigates a novel offline change-point detection problem from an information-theoretic perspective.
We assume that the knowledge of the underlying pre- and post-change distributions are not known and can only be learned from the training sequences which are available.
arXiv Detail & Related papers (2020-03-13T23:39:40Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
We propose a framework for approximate inference that estimates the target conditional as a composition of two flow models.
Our method is evaluated on a variety of inverse problems and is shown to produce high-quality samples with uncertainty.
arXiv Detail & Related papers (2020-02-26T19:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.