論文の概要: Monitoring Critical Infrastructure Facilities During Disasters Using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.14432v1
- Date: Thu, 18 Apr 2024 19:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:27:13.916074
- Title: Monitoring Critical Infrastructure Facilities During Disasters Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた災害時のインフラ設備の監視
- Authors: Abdul Wahab Ziaullah, Ferda Ofli, Muhammad Imran,
- Abstract要約: クリティカルインフラストラクチャー施設(CIF)は、特に大規模緊急時において、コミュニティの機能に不可欠である。
本稿では,大規模言語モデル(LLM)の適用の可能性を探り,自然災害によるCIFの状況を監視する。
我々は2つの異なる国の災害イベントからソーシャルメディアデータを分析し、CIFに対する報告された影響と、その影響の重大さと運用状況を明らかにする。
- 参考スコア(独自算出の注目度): 8.17728833322492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical Infrastructure Facilities (CIFs), such as healthcare and transportation facilities, are vital for the functioning of a community, especially during large-scale emergencies. In this paper, we explore a potential application of Large Language Models (LLMs) to monitor the status of CIFs affected by natural disasters through information disseminated in social media networks. To this end, we analyze social media data from two disaster events in two different countries to identify reported impacts to CIFs as well as their impact severity and operational status. We employ state-of-the-art open-source LLMs to perform computational tasks including retrieval, classification, and inference, all in a zero-shot setting. Through extensive experimentation, we report the results of these tasks using standard evaluation metrics and reveal insights into the strengths and weaknesses of LLMs. We note that although LLMs perform well in classification tasks, they encounter challenges with inference tasks, especially when the context/prompt is complex and lengthy. Additionally, we outline various potential directions for future exploration that can be beneficial during the initial adoption phase of LLMs for disaster response tasks.
- Abstract(参考訳): 医療や交通機関などの重要なインフラ施設(CIF)は、特に大規模緊急事態時に地域社会の機能に欠かせない存在である。
本稿では,大規模言語モデル(LLM)の適用の可能性を探り,自然災害によるCIFの状況を監視する。
この目的のために,2つの異なる国の災害イベントのソーシャルメディアデータを分析し,CIFに対する報告された影響と,その影響の深刻さと運用状況を明らかにする。
我々は最先端のオープンソースLLMを用いて、検索、分類、推論を含む計算タスクを、すべてゼロショット設定で実行します。
広範にわたる実験を通じて,これらの課題の成果を標準評価指標を用いて報告し,LLMの強みと弱みに関する知見を明らかにする。
LLMは分類タスクにおいてよく機能するが、特にコンテキスト/プロンプトが複雑で長い場合、推論タスクの課題に直面することに留意する。
さらに,災害対応タスクへのLLMの導入初期において有用となる,今後の探索に向けた様々な方向性について概説する。
関連論文リスト
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - DisasterQA: A Benchmark for Assessing the performance of LLMs in Disaster Response [0.0]
災害対応知識におけるLarge Language Models (LLM) の機能を評価する。
ベンチマークでは、幅広い災害対応トピックをカバーしている。
その結果, LLM には災害対応知識の改善が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-10-09T00:13:06Z) - DetoxBench: Benchmarking Large Language Models for Multitask Fraud & Abuse Detection [15.933013428603152]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な能力を示した。
不正で虐待的な言語を識別・緩和する上で,LLMの性能を評価するためのベンチマークスイートを提案する。
論文 参考訳(メタデータ) (2024-09-09T21:12:03Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - On Catastrophic Inheritance of Large Foundation Models [51.41727422011327]
大ファンデーションモデル(LFM)は素晴らしいパフォーマンスを誇示している。しかし、彼らの神話的および解釈されていないポテンシャルについて大きな懸念が持ち上がっている。
我々は, LFMに深く根ざした「破滅的継承」という, 無視された問題を特定することを提案する。
この問題の背景にある課題を議論し、事前学習と下流適応の両方からLFMの破滅的な継承を理解するためのフレームワークであるUIMを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:21:55Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.6986500640871482]
LLM(Large Language Models)は、テキストの生成や要約、言語翻訳、質問応答など、非常に優れた機能を示し、複数の分野に貢献している。
これらのモデルは、Jailbreak攻撃、データ中毒攻撃、Personally Identible Information(PII)漏洩攻撃など、セキュリティやプライバシ攻撃にも脆弱である。
この調査では、トレーニングデータとユーザの両方に対するLLMのセキュリティとプライバシの課題と、輸送、教育、医療といったさまざまな領域におけるアプリケーションベースのリスクについて、徹底的にレビューする。
論文 参考訳(メタデータ) (2024-01-30T04:00:54Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。