A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
- URL: http://arxiv.org/abs/2404.14445v1
- Date: Sat, 20 Apr 2024 08:08:28 GMT
- Title: A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
- Authors: Yefeng Yuan, Yuhong Liu, Liang Cheng,
- Abstract summary: generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data.
Despite the potential benefits, concerns regarding privacy leakage have surfaced.
We introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data.
- Score: 3.672850225066168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.
Related papers
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - SynthEval: A Framework for Detailed Utility and Privacy Evaluation of Tabular Synthetic Data [3.360001542033098]
SynthEval is a novel open-source evaluation framework for synthetic data.
It treats categorical and numerical attributes with equal care, without assuming any special kind of preprocessing steps.
Our tool leverages statistical and machine learning techniques to comprehensively evaluate synthetic data fidelity and privacy-preserving integrity.
arXiv Detail & Related papers (2024-04-24T11:49:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Systematic Assessment of Tabular Data Synthesis Algorithms [9.08530697055844]
We present a systematic evaluation framework for assessing data synthesis algorithms.
We introduce a set of new metrics in terms of fidelity, privacy, and utility to address their limitations.
Based on the proposed metrics, we also devise a unified objective for tuning, which can consistently improve the quality of synthetic data.
arXiv Detail & Related papers (2024-02-09T22:07:59Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Statistical properties and privacy guarantees of an original
distance-based fully synthetic data generation method [0.0]
This work shows the technical feasibility of generating publicly releasable synthetic data using a multi-step framework.
By successfully assessing the quality of data produced using a novel multi-step synthetic data generation framework, we showed the technical and conceptual soundness of the Open-CESP initiative.
arXiv Detail & Related papers (2023-10-10T12:29:57Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Holdout-Based Fidelity and Privacy Assessment of Mixed-Type Synthetic
Data [0.0]
AI-based data synthesis has seen rapid progress over the last several years, and is increasingly recognized for its promise to enable privacy-respecting data sharing.
We introduce and demonstrate a holdout-based empirical assessment framework for quantifying the fidelity as well as the privacy risk of synthetic data solutions.
arXiv Detail & Related papers (2021-04-01T17:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.